Newer
Older
\section{PN junction bias}
\subsection{Model}
We can see the junction as a series of resistors as follows.
(Junction $V_{pn}>0$ is a forward bias, QNR is a quasi-neutral region.)
\begin{circuit}[H]
\centering
\caption{PN junction model}
\begin{circuitikz}
\draw (0,0) to[R, l=$R_{mp}$] ++(2,0)
to [R, l=\textnormal{p-QNR}] ++(2,0)
to [R, l=\textnormal{SCR}] ++(2,0)
to [R, l=\textnormal{n-QNR}] ++(2,0)
to [R, l=$R_{mn}$] (10,0);
\draw (0,0) to [short] (0,2)
to [V, v=$V_{pn}$] (10,2)
to [short] (10,0);
\begin{scope}[opacity=.5]
\draw (1,-1) rectangle (9,1);
\draw (4,-1) -- (4,1);
\draw (6,-1) -- (6,1);
\draw[dotted] (5,-1) -- (5,1);
\end{scope}
\node at (2.5,-1.5) {p-QNR};
\node at (5,-1.5) {SCR};
\node at (7.5,-1.5) {n-QNR};
\node at (4.5,-0.5) {$-$};
\node at (5.5,-0.5) {$+$};
\end{circuitikz}
Importantly, the SCR resistance ist the most important one and others can be neglected.
\subsection{Space charge region (SCR)}
In essence, applying a forward/reverse bias effects the depletion region:
\begin{align}
\phi_B & \rightarrow \phi_B-V_{pn} \\
x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\
x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\
x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)(N_a+N_d)}{q N_d N_a}} \\
\left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V) N_a N_d}{\varepsilon (N_a + N_d)}}
\end{align}
In the case of a strongly doped $p^+n$ junction,
we can approximate the SCR since it exists only in the lesser doped region.
\begin{equation}
\end{equation}
\subsection{PN small-signal capacitance}
In reverse bias, the PN junction acts as a capacitor.
\begin{equation}
C_{j0} = \frac{\varepsilon}{W_{dep}}
\end{equation}
So as a function of the bias voltage, we get
\begin{equation}
\begin{split}
&=\sqrt{\frac{q\varepsilon N_aN_d}{2q(\phi_B-V)(N_a+N_d)}}\\
&=\frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}}
\end{split}
\end{equation}
In a strongly asymmetric junction $p^+n$ ($N_a\gg N_d$)
\begin{equation}
\frac{1}{C_j^2} \approx \frac{2(\phi_B-V)}{q\varepsilon N_d}
\end{equation}