Skip to content
Snippets Groups Projects
Verified Commit c97579e9 authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

add diode current

parent 9482e484
No related branches found
No related tags found
No related merge requests found
......@@ -90,8 +90,8 @@ Which gives us the diffusion current density:
(Defined as density times charge,
ergo the double negative for electron diffusion.)
\begin{align}
J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \\
J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x}
J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \label{label:eq:diff_current_n} \\
J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} \label{label:eq:diff_current_p}
\end{align}
......
......@@ -55,9 +55,9 @@ If the doping changes slowly with x:
We saw in \autoref{label:sss:einstein_rel_mob_diff} the relation between mobility and diffusion coefficients.
From this we find
\begin{align}
n & =n_{ref}e^{q(\phi-\phi_{ref})/kT} \\
\phi_ref & =0 \\
n_{ref} & =n_i
n & =n_{ref}e^{q(\phi-\phi_{ref})/kT} \\
\phi_{ref} & =0 \\
n_{ref} & =n_i
\end{align}
And by extension
\begin{align}
......@@ -65,10 +65,10 @@ And by extension
p & =n_ie^{-q\phi/kT}
\end{align}
Rearranging the above, we find a rule of thumb for the potential:
Rearranging the above, we find an expression for the potential:
\begin{align}
\phi & =\frac{kT}{q}\ln\frac{n}{n_i} \\
\phi & = -\frac{kT}{q}\ln\frac{p}{n_i}
\phi & =\frac{kT}{q}\ln\frac{n}{n_i} \label{label:eq:boltzman:phi_n} \\
\phi & = -\frac{kT}{q}\ln\frac{p}{n_i} \label{label:eq:boltzman:phi_p}
\end{align}
For Si at room temperature this is an increase of 60 mV per decade in doping.
\begin{equation}
......
......@@ -2,7 +2,7 @@
\subsection{Model}
We can see the junction as a series of resistors as follows.
(Junction $V_{pn}>0$ is a forward bias.)
(Junction $V_{pn}>0$ is a forward bias, QNR is a quasi-neutral region.)
\begin{center}
\begin{circuitikz}
\draw (0,0) to[R, l=$R_{mp}$] ++(2,0)
......
\section{PN junction diode}
\subsection{Carrier concentration under bias}
Under forward bias, the net current is no longer zero.
\begin{equation}
\left| J_{drift} \right|<\left| J_{diff} \right|
\end{equation}
Which causes injection of minority carriers into the QNR regions giving rise to `high' currents.
\subsection{Diode current}
To calculate the current, we \begin{enumerate}
\item Calculate concentration of minority carriers at the edges of SCR
\item Calculate minority carrier diffusion current in each QNR for $I_n$ and $I_p$
\item Sum the currents $I_n$ and $I_p$
\end{enumerate}
\subsubsection{Minority carrier conditions}
We use the quasi-equilibrium equation to misuse equations for equilibrium.
\begin{align}
\frac{n(x_1)}{n(x_2)} & \approx \exp{\frac{q(\phi(x_1)-\phi(x_2))}{kT}} \\
\frac{p(x_1)}{p(x_2)} & \approx \exp{\frac{-q(\phi(x_1)-\phi(x_2))}{kT}}
\end{align}
So by using $x_n$ and $x_p$ in the above equation we have the following:
\begin{align}
\frac{n(x_n)}{n(-x_p)} & \approx \exp{\frac{q(\phi_B-V)}{kT}} \\
\frac{p(x_n)}{p(-x_p)} & \approx \exp{\frac{-q(\phi_B-V)}{kT}} \\
p(-x_p) & =N_a \\
n(x_n) & =N_d
\end{align}
And so we find what we needed:
\begin{align}
n(-x_p) & \approx N_d\exp\frac{q(V-\phi_B)}{kT} \\
p(x_n) & \approx N_a\exp\frac{q(V-\phi_B)}{kT}
\end{align}
Then by using the Boltzman relations \eqref{label:eq:boltzman:phi_n} and \eqref{label:eq:boltzman:phi_p} we find
\begin{align}
\phi_B & = \frac{kT}{q}\ln\frac{N_dN_a}{n_i^2} \\
\Rightarrow n(-x_p) & \approx \frac{n_i^2}{N_a}\exp\frac{qV}{kT} \\
\Rightarrow p(x_n) & \approx \frac{n_i^2}{N_d}\exp\frac{qV}{kT}
\end{align}
\subsubsection{Diffusion current in QNR}
We assume a linear gradient between $n(-W_p)$ and $n(-x_p)$ to easily use \eqref{label:eq:diff_current_n} to find
\begin{equation}
\begin{split}
J_n^{diff} &= qD_n\frac{n_p(-x_p)-n_p(-W_p)}{W_p-x_p}\\
&= qD_n \frac{\left(\frac{n_i^2}{N_a}\exp{\frac{qV}{kT}}\right)-\frac{n_i^2}{N_a}}{W_p-x_p}\\
&= q\frac{n_i^2}{N_a}\frac{D_n}{W_p-x_p}\left(\exp{\frac{qV}{kT}}-1\right)
\end{split}
\end{equation}
\subsubsection{Total diode current}
\begin{equation}
\begin{split}
J & = J_n+J_p \\
& =q n_i^2 \left( \frac{1}{N_A}\frac{D_n}{W_p-x_p} + \frac{1}{N_D}\frac{D_p}{W_n-x_n} \right)\left(\exp
\frac{qV}{kT} - 1\right)
\end{split}
\end{equation}
Or so simplify
\begin{align}
I & =I_0\left(\exp\frac{qV}{kT}-1\right) \\
I_0 & = A q n_i^2 \left( \frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right)
\end{align}
\subsection{PN junction reverse bias}
When applying a reverse bias, the depletion region gets wider and the electric field increases.
There comes a point when the diode breaks down and destroys itself.
\begin{equation}
W_{dep} = \sqrt{\frac{2\varepsilon}{q}\left(\frac{1}{N_A}+\frac{1}{N_D}\right)\left(V_0+V_R\right)}
\end{equation}
\ No newline at end of file
......@@ -42,5 +42,6 @@
\include{02_carrier_transport}
\include{03_pn_junction_basics}
\include{04_pn_junction}
\include{05_pn_junction_bias.tex}
\include{05_pn_junction_bias}
\include{06_pn_junction_diode}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment