diff --git a/02_carrier_transport.tex b/02_carrier_transport.tex index 87ee1485e2c7db03b9a660f099299bde0b672587..51d5be0abbde6174d71ace8867bad6b9f0ca8571 100644 --- a/02_carrier_transport.tex +++ b/02_carrier_transport.tex @@ -90,8 +90,8 @@ Which gives us the diffusion current density: (Defined as density times charge, ergo the double negative for electron diffusion.) \begin{align} - J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \\ - J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} + J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \label{label:eq:diff_current_n} \\ + J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} \label{label:eq:diff_current_p} \end{align} diff --git a/03_pn_junction_basics.tex b/03_pn_junction_basics.tex index e4647a0f0595a4697d963c61a5d1f62a9a905a89..0a5d0a48631b12969c4616c860753fd0eb87b414 100644 --- a/03_pn_junction_basics.tex +++ b/03_pn_junction_basics.tex @@ -55,9 +55,9 @@ If the doping changes slowly with x: We saw in \autoref{label:sss:einstein_rel_mob_diff} the relation between mobility and diffusion coefficients. From this we find \begin{align} - n & =n_{ref}e^{q(\phi-\phi_{ref})/kT} \\ - \phi_ref & =0 \\ - n_{ref} & =n_i + n & =n_{ref}e^{q(\phi-\phi_{ref})/kT} \\ + \phi_{ref} & =0 \\ + n_{ref} & =n_i \end{align} And by extension \begin{align} @@ -65,10 +65,10 @@ And by extension p & =n_ie^{-q\phi/kT} \end{align} -Rearranging the above, we find a rule of thumb for the potential: +Rearranging the above, we find an expression for the potential: \begin{align} - \phi & =\frac{kT}{q}\ln\frac{n}{n_i} \\ - \phi & = -\frac{kT}{q}\ln\frac{p}{n_i} + \phi & =\frac{kT}{q}\ln\frac{n}{n_i} \label{label:eq:boltzman:phi_n} \\ + \phi & = -\frac{kT}{q}\ln\frac{p}{n_i} \label{label:eq:boltzman:phi_p} \end{align} For Si at room temperature this is an increase of 60 mV per decade in doping. \begin{equation} diff --git a/05_pn_junction_bias.tex b/05_pn_junction_bias.tex index 272179aee5a5e67f617885a3d4bd57a2f2d32611..bd2312c071d8181abc402967b799a1aace8f7a32 100644 --- a/05_pn_junction_bias.tex +++ b/05_pn_junction_bias.tex @@ -2,7 +2,7 @@ \subsection{Model} We can see the junction as a series of resistors as follows. -(Junction $V_{pn}>0$ is a forward bias.) +(Junction $V_{pn}>0$ is a forward bias, QNR is a quasi-neutral region.) \begin{center} \begin{circuitikz} \draw (0,0) to[R, l=$R_{mp}$] ++(2,0) diff --git a/06_pn_junction_diode.tex b/06_pn_junction_diode.tex new file mode 100644 index 0000000000000000000000000000000000000000..6d879fa222a4a48c60efa0330234ebe1eaa68ca9 --- /dev/null +++ b/06_pn_junction_diode.tex @@ -0,0 +1,76 @@ +\section{PN junction diode} +\subsection{Carrier concentration under bias} +Under forward bias, the net current is no longer zero. +\begin{equation} + \left| J_{drift} \right|<\left| J_{diff} \right| +\end{equation} +Which causes injection of minority carriers into the QNR regions giving rise to `high' currents. + + +\subsection{Diode current} +To calculate the current, we \begin{enumerate} + \item Calculate concentration of minority carriers at the edges of SCR + \item Calculate minority carrier diffusion current in each QNR for $I_n$ and $I_p$ + \item Sum the currents $I_n$ and $I_p$ +\end{enumerate} + +\subsubsection{Minority carrier conditions} +We use the quasi-equilibrium equation to misuse equations for equilibrium. +\begin{align} + \frac{n(x_1)}{n(x_2)} & \approx \exp{\frac{q(\phi(x_1)-\phi(x_2))}{kT}} \\ + \frac{p(x_1)}{p(x_2)} & \approx \exp{\frac{-q(\phi(x_1)-\phi(x_2))}{kT}} +\end{align} + +So by using $x_n$ and $x_p$ in the above equation we have the following: +\begin{align} + \frac{n(x_n)}{n(-x_p)} & \approx \exp{\frac{q(\phi_B-V)}{kT}} \\ + \frac{p(x_n)}{p(-x_p)} & \approx \exp{\frac{-q(\phi_B-V)}{kT}} \\ + p(-x_p) & =N_a \\ + n(x_n) & =N_d +\end{align} + +And so we find what we needed: +\begin{align} + n(-x_p) & \approx N_d\exp\frac{q(V-\phi_B)}{kT} \\ + p(x_n) & \approx N_a\exp\frac{q(V-\phi_B)}{kT} +\end{align} + + +Then by using the Boltzman relations \eqref{label:eq:boltzman:phi_n} and \eqref{label:eq:boltzman:phi_p} we find +\begin{align} + \phi_B & = \frac{kT}{q}\ln\frac{N_dN_a}{n_i^2} \\ + \Rightarrow n(-x_p) & \approx \frac{n_i^2}{N_a}\exp\frac{qV}{kT} \\ + \Rightarrow p(x_n) & \approx \frac{n_i^2}{N_d}\exp\frac{qV}{kT} +\end{align} + +\subsubsection{Diffusion current in QNR} +We assume a linear gradient between $n(-W_p)$ and $n(-x_p)$ to easily use \eqref{label:eq:diff_current_n} to find +\begin{equation} + \begin{split} + J_n^{diff} &= qD_n\frac{n_p(-x_p)-n_p(-W_p)}{W_p-x_p}\\ + &= qD_n \frac{\left(\frac{n_i^2}{N_a}\exp{\frac{qV}{kT}}\right)-\frac{n_i^2}{N_a}}{W_p-x_p}\\ + &= q\frac{n_i^2}{N_a}\frac{D_n}{W_p-x_p}\left(\exp{\frac{qV}{kT}}-1\right) + \end{split} +\end{equation} + +\subsubsection{Total diode current} +\begin{equation} + \begin{split} + J & = J_n+J_p \\ + & =q n_i^2 \left( \frac{1}{N_A}\frac{D_n}{W_p-x_p} + \frac{1}{N_D}\frac{D_p}{W_n-x_n} \right)\left(\exp + \frac{qV}{kT} - 1\right) + \end{split} +\end{equation} +Or so simplify +\begin{align} + I & =I_0\left(\exp\frac{qV}{kT}-1\right) \\ + I_0 & = A q n_i^2 \left( \frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right) +\end{align} + + +\subsection{PN junction reverse bias} +When applying a reverse bias, the depletion region gets wider and the electric field increases. +There comes a point when the diode breaks down and destroys itself. +\begin{equation} + W_{dep} = \sqrt{\frac{2\varepsilon}{q}\left(\frac{1}{N_A}+\frac{1}{N_D}\right)\left(V_0+V_R\right)} +\end{equation} \ No newline at end of file diff --git a/semiconductor_summary.tex b/semiconductor_summary.tex index 0697fde30de03ad29c994c8c124b7ef7a9a8213f..6c92d28f05d63ebd7915430b4b2f0ebbf084f24e 100644 --- a/semiconductor_summary.tex +++ b/semiconductor_summary.tex @@ -42,5 +42,6 @@ \include{02_carrier_transport} \include{03_pn_junction_basics} \include{04_pn_junction} -\include{05_pn_junction_bias.tex} +\include{05_pn_junction_bias} +\include{06_pn_junction_diode} \end{document}