\section{PN junction bias} \subsection{Model} We can see the junction as a series of resistors as follows. (Junction $V_{pn}>0$ is a forward bias, QNR is a quasi-neutral region.) \begin{circuit}[H] \centering \caption{PN junction model} \begin{circuitikz} \draw (0,0) to[R, l=$R_{mp}$] ++(2,0) to [R, l=\textnormal{p-QNR}] ++(2,0) to [R, l=\textnormal{SCR}] ++(2,0) to [R, l=\textnormal{n-QNR}] ++(2,0) to [R, l=$R_{mn}$] (10,0); \draw (0,0) to [short] (0,2) to [V, v=$V_{pn}$] (10,2) to [short] (10,0); \begin{scope}[opacity=.5] \draw (1,-1) rectangle (9,1); \draw (4,-1) -- (4,1); \draw (6,-1) -- (6,1); \draw[dotted] (5,-1) -- (5,1); \end{scope} \node at (2.5,-1.5) {p-QNR}; \node at (5,-1.5) {SCR}; \node at (7.5,-1.5) {n-QNR}; \node at (4.5,-0.5) {$-$}; \node at (5.5,-0.5) {$+$}; \end{circuitikz} \end{circuit} Importantly, the SCR resistance ist the most important one and others can be neglected. \subsection{Space charge region (SCR)} In essence, applying a forward/reverse bias effects the depletion region: \begin{align} \phi_B & \rightarrow \phi_B-V_{pn} \\ x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\ x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\ x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)(N_a+N_d)}{q N_d N_a}} \\ \left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V) N_a N_d}{\varepsilon (N_a + N_d)}} \end{align} In the case of a strongly doped $p^+n$ junction, we can approximate the SCR since it exists only in the lesser doped region. \begin{equation} x_n(V)=x_{n0}\sqrt{1-\frac{V}{\phi_B}} \end{equation} \subsection{PN small-signal capacitance} In reverse bias, the PN junction acts as a capacitor. \begin{equation} C_{j0} = \frac{\varepsilon}{W_{dep}} \end{equation} So as a function of the bias voltage, we get \begin{equation} \begin{split} C_j(V) &= \frac{\varepsilon}{x_d(V)}\\ &=\sqrt{\frac{q\varepsilon N_aN_d}{2q(\phi_B-V)(N_a+N_d)}}\\ &=\frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} \end{split} \end{equation} In a strongly asymmetric junction $p^+n$ ($N_a\gg N_d$) \begin{equation} \frac{1}{C_j^2} \approx \frac{2(\phi_B-V)}{q\varepsilon N_d} \end{equation}