Skip to content
Snippets Groups Projects
Verified Commit f707b313 authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

add chap2

parent 1834093c
No related branches found
No related tags found
No related merge requests found
......@@ -52,7 +52,56 @@ Average drift velocity:
\end{equation}
\subsubsection{Mobility}
For the sake of simplicity, let's define mobility for both holes and electrons.
(These values are usually found in diagrams.)
\begin{align}
\mu_{n,p} & = \frac{q\tau_c}{2m_{n,p}} \equiv \text{mobility}\ [cm^2/Vs] \\
amhere
\end{align}
\ No newline at end of file
v_{dn} & =-\mu_nE \\
v_{dp} & = \mu_pE \\
\mu_n & >_mu_p
\end{align}
\subsubsection{Drift current}
For the net drift current density slap together velocity, density and charge.
\begin{equation}
label{eq:drift_current}
J^{drift} = J_n^{drift}+J_p^{drift} = q(n\mu_n+p\mu_p)E
\end{equation}
From which we can find Ohm's law:
\begin{alignat}{2}
J & =\sigma E & & = \frac{E}{\rho} \\
\rho & =\frac{1}{\sigma} & & = \frac{1}{q \left(n\mu_n+p\mu_p\right)}
\end{alignat}
Which gives us different resistances for n and p type semiconductors.
\begin{align}
\rho_n & \approx \frac{1}{qN_d\mu_n} \\
\rho_p & \approx \frac{1}{qN_a\mu_p}
\end{align}
\subsubsection{Diffusion current}
If there is a concentration gradient, the carriers will diffuse to equalize the concentration. Here flux $F \ [cm^{-2}s^{-1}]$ is the number of electrons/holes per unit area per unit time.
\begin{align}
F_n & = -D_n\frac{\mathrm{d} n}{\mathrm{d} x} \\
F_p & = -D_p\frac{\mathrm{d} p}{\mathrm{d} x}
\end{align}
Which gives us the diffusion current density:
(Defined as density times charge, ergo the double negative for electron diffusion.)
\begin{align}
J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \\
J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x}
\end{align}
\subsubsection{Einstein relation between mobility and diffusion coefficient}
\begin{equation}
\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q^2}
\end{equation}
\subsubsection{Total current}
\begin{alignat}{2}
J_{total} & =J_n+J_p & & \\
J_n & =J_n^{drift}+J_n^{diff} & & =qn\mu_nE+qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \\
J_p & =J_p^{drift}+J_p^{diff} & & =qp\mu_pE-qD_p\frac{\mathrm{d} p}{\mathrm{d} x}
\end{alignat}
\ No newline at end of file
......@@ -14,7 +14,7 @@
This summary for
\href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{Micro and nanoelectronic devices}
© 2021 by
© 2023 by
\href{https://gitlab.epfl.ch/sthuer}{Simon Thür}
is licensed under
\href{http://creativecommons.org/licenses/by/4.0/}{CC BY 4.0}.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment