Which gives us different resistances for n and p type semiconductors.
\begin{align}
\rho_n &\approx\frac{1}{qN_d\mu_n}\\
\rho_p &\approx\frac{1}{qN_a\mu_p}
\end{align}
\subsubsection{Diffusion current}
If there is a concentration gradient, the carriers will diffuse to equalize the concentration. Here flux $F \ [cm^{-2}s^{-1}]$ is the number of electrons/holes per unit area per unit time.
\begin{align}
F_n & = -D_n\frac{\mathrm{d} n}{\mathrm{d} x}\\
F_p & = -D_p\frac{\mathrm{d} p}{\mathrm{d} x}
\end{align}
Which gives us the diffusion current density:
(Defined as density times charge, ergo the double negative for electron diffusion.)