From f707b3138b9b6441cbded37d5453b0c5d5943792 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Simon=20Th=C3=BCr?= <thuer.simon@hotmail.com> Date: Fri, 7 Apr 2023 23:03:16 +0200 Subject: [PATCH] add chap2 --- 02_carrier_transport.tex | 53 +++++++++++++++++++++++++++++++++++++-- semiconductor_summary.tex | 2 +- 2 files changed, 52 insertions(+), 3 deletions(-) diff --git a/02_carrier_transport.tex b/02_carrier_transport.tex index ff129f4..eb80b64 100644 --- a/02_carrier_transport.tex +++ b/02_carrier_transport.tex @@ -52,7 +52,56 @@ Average drift velocity: \end{equation} \subsubsection{Mobility} +For the sake of simplicity, let's define mobility for both holes and electrons. +(These values are usually found in diagrams.) \begin{align} \mu_{n,p} & = \frac{q\tau_c}{2m_{n,p}} \equiv \text{mobility}\ [cm^2/Vs] \\ - amhere -\end{align} \ No newline at end of file + v_{dn} & =-\mu_nE \\ + v_{dp} & = \mu_pE \\ + \mu_n & >_mu_p +\end{align} + +\subsubsection{Drift current} +For the net drift current density slap together velocity, density and charge. +\begin{equation} + label{eq:drift_current} + J^{drift} = J_n^{drift}+J_p^{drift} = q(n\mu_n+p\mu_p)E +\end{equation} +From which we can find Ohm's law: +\begin{alignat}{2} + J & =\sigma E & & = \frac{E}{\rho} \\ + \rho & =\frac{1}{\sigma} & & = \frac{1}{q \left(n\mu_n+p\mu_p\right)} +\end{alignat} +Which gives us different resistances for n and p type semiconductors. +\begin{align} + \rho_n & \approx \frac{1}{qN_d\mu_n} \\ + \rho_p & \approx \frac{1}{qN_a\mu_p} +\end{align} + + +\subsubsection{Diffusion current} +If there is a concentration gradient, the carriers will diffuse to equalize the concentration. Here flux $F \ [cm^{-2}s^{-1}]$ is the number of electrons/holes per unit area per unit time. +\begin{align} + F_n & = -D_n\frac{\mathrm{d} n}{\mathrm{d} x} \\ + F_p & = -D_p\frac{\mathrm{d} p}{\mathrm{d} x} +\end{align} + +Which gives us the diffusion current density: +(Defined as density times charge, ergo the double negative for electron diffusion.) +\begin{align} + J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \\ + J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} +\end{align} + + +\subsubsection{Einstein relation between mobility and diffusion coefficient} +\begin{equation} + \frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q^2} +\end{equation} + +\subsubsection{Total current} +\begin{alignat}{2} + J_{total} & =J_n+J_p & & \\ + J_n & =J_n^{drift}+J_n^{diff} & & =qn\mu_nE+qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \\ + J_p & =J_p^{drift}+J_p^{diff} & & =qp\mu_pE-qD_p\frac{\mathrm{d} p}{\mathrm{d} x} +\end{alignat} \ No newline at end of file diff --git a/semiconductor_summary.tex b/semiconductor_summary.tex index 4f507d3..e446ff8 100644 --- a/semiconductor_summary.tex +++ b/semiconductor_summary.tex @@ -14,7 +14,7 @@ This summary for \href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{Micro and nanoelectronic devices} - © 2021 by + © 2023 by \href{https://gitlab.epfl.ch/sthuer}{Simon Thür} is licensed under \href{http://creativecommons.org/licenses/by/4.0/}{CC BY 4.0}. -- GitLab