Skip to content
Snippets Groups Projects
Verified Commit e60344e6 authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

add bjt

parent 6663f277
No related branches found
No related tags found
No related merge requests found
\section{Bipolar junction transistor (BJT)}
\begin{figure}[h]
\centering
\caption{BJT}
\includegraphics[width=.75\textwidth]{imgs/bjt_terminals_and_functioning.png}
\end{figure}
But what's going on?
If $V_{BE}>0$ injection of electrons from E to B, of holes from B to E.
If $V_{BC}<0$ extraction of electrons from B to C, of holes from C to B.
\subsection{BJT characteristics}
\begin{align}
I_E & = -I_C-I_B \\
\begin{split}
\beta &= \frac{I_C}{I_B}
=\frac{n_{pB_0}\frac{D_n}{W_B}}{p_{nE_0}\frac{D_p}{W_E}}\\
&= \frac{N_{dE} D_n W_E}{N_{aB} D_p W_B}
\end{split}
\end{align}
Collector current,
focus on electron diffusion in base:
\begin{align}
n_{pB}(0) & =n_{pB_0}e^{\frac{qV_{BE}}{kT}} \\
n_{pB}(x) & =n_{pB}(0)(1-\frac{x}{W_B}) \\[1em]
\begin{split}
J_{nB} &= qD_n\frac{\mathrm{d} n_{pB}}{\mathrm{d}x}\\
&= -qD_n\frac{n_{pB}(0)}{W_B}
\end{split} \\
\begin{split}
I_C &=-J_{nB}A_E\\
&=qA_E\frac{E_n}{W_B}n_{pB_0}e^{\frac{qV_{BE}}{kT}}
\end{split} \\
I_C & = I_Se^{\frac{qV_{BE}}{kT}}
\end{align}
Base current,
focus on hole injection and recombination in emitter:
\begin{align}
p_{nE}(-x_{BE}) & =p_{nE_0}e^{-\frac{qV_{BE}}{kT}} \\
p_{nE}(-W_E-x_{BE}) & =p_{nE_0} \\
p_{nE}(x) & =\left[ p_{nE}(-x_{BE}-p_{nE_0}) \right]\left( 1+\frac{x+x_{BE}}{W_E} \right)+P_{nE_0} & \leftarrow \text{Hole Profile} \\[1em]
\begin{split}
J_{pE}&=-qD_p\frac{\mathrm{d}p_{nE}}{\mathrm{d}x}\\
&=-qD_p\frac{p_{nE(-x_{BE})-p_{nE_0}}}{W_E}
\end{split} \\
\begin{split}
I_B&=-J_{pE}A_E\\
&=qA_E\frac{D_p}{W_E}p_{nE_0}\left( e^{\frac{qV_{VE}}{kT}} -1 \right)
\end{split} \\
I_B & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\
I_B\approx\frac{I_C}{\beta}
\end{align}
\subsubsection{`Good' transistor}
We want collector and emitter current to be identical and so we define $\alpha$ as measurement of how close we are:
\begin{align}
I_C & =-\alpha I_E \\
& =\alpha\left(I_B+I_C\right) \\
& =\frac{\alpha}{1-\alpha}I_B \\
& =\beta I_B \\
\beta & =\frac{\alpha}{1-\alpha}
\end{align}
\subsection{Summary forward active}
\begin{align}
I_C & = I_Se^{\frac{qV_{BE}}{kT}} \\
I_B & = \frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\
I_E & = -I_C-I_B
\end{align}
For reverse, it is the same but $\beta_R\approx [0.1,5]\ll\beta$.
\subsection{Summary cut-off}
\begin{alignat}{2}
I_{B1} & = -\frac{I_S}{\beta} & & =-I_E \\
I_{B2} & =-\frac{I_S}{\beta_R} & & =-I_C
\end{alignat}
\subsection{Summary saturation}
\begin{align}
I_C & =I_S\left(e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}}\right)-\frac{I_S}{\beta_R}\left( e^\frac{qV_{BC}}{kT} - 1 \right) \\
I_B & =\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)+\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right) \\
I_E & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}} - 1\right) - I_S\left( e^{\frac{qV_{BE}}{kT}} -e^{\frac{qV_{BC}}{kT}} \right)
\end{align}
\subsection{Ebers-Moll model}
\begin{center}
\begin{circuitikz}
\draw (0,0) node[left] {B} to [short,*-] ++(1,0)
to [Do,l=$\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right)$] ++(0,2)
to [short] ++(2,0)
to [I,l=$I_S\left( e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}} \right)$,i=$$] ++(0,-4)
to [short] ++(-1,0);
\draw (1,0) to [Do,l_=$\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)$] ++(0,-2)
to [short] ++(1,0)
to [short,-*] ++(0,-1) node [below] {E};
\draw (2,2) to [short,-*] ++(0,1) node[above] {C};
\end{circuitikz}
\end{center}
\subsection{Early effect}
With increasing $V_{CE}$, the depletion region inceases.
To not have to deal with that, we introduce a correction factor
\begin{equation}
I_C = I_S e^{\frac{V_{BE}}{V_{th}}}\left(1+\frac{V_{CE}}{V_A}\right)
\end{equation}
\subsection{Transfer characteristics}
We evaluate the transistor at its operating point ($OP$ or $Q=(V_{BE},V_{CE})$) to find the transconductance $g_m$.
\begin{equation}
\label{label:eq:bjt_transconductance}
g_m = \left. \frac{\partial i_C}{\partial V_{BE}} \right|_{OP} = \frac{qI_C}{kT}
\end{equation}
imgs/bjt_terminals_and_functioning.png

145 KiB

......@@ -45,4 +45,5 @@
\include{05_pn_junction_bias}
\include{06_pn_junction_diode}
\include{07_diode_applications.tex}
\include{08_bjt}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment