Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
Semiconductors_Summary
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Admin message
GitLab is being updated to the latest version (v17.9.2). No downtime is expected.
Show more breadcrumbs
Simon Josef Thür
Semiconductors_Summary
Commits
e60344e6
Verified
Commit
e60344e6
authored
1 year ago
by
Simon Josef Thür
Browse files
Options
Downloads
Patches
Plain Diff
add bjt
parent
6663f277
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
08_bjt.tex
+116
-0
116 additions, 0 deletions
08_bjt.tex
imgs/bjt_terminals_and_functioning.png
+0
-0
0 additions, 0 deletions
imgs/bjt_terminals_and_functioning.png
semiconductor_summary.tex
+1
-0
1 addition, 0 deletions
semiconductor_summary.tex
with
117 additions
and
0 deletions
08_bjt.tex
0 → 100644
+
116
−
0
View file @
e60344e6
\section
{
Bipolar junction transistor (BJT)
}
\begin{figure}
[h]
\centering
\caption
{
BJT
}
\includegraphics
[width=.75\textwidth]
{
imgs/bjt
_
terminals
_
and
_
functioning.png
}
\end{figure}
But what's going on?
If
$
V
_{
BE
}
>
0
$
injection of electrons from E to B, of holes from B to E.
If
$
V
_{
BC
}
<
0
$
extraction of electrons from B to C, of holes from C to B.
\subsection
{
BJT characteristics
}
\begin{align}
I
_
E
&
= -I
_
C-I
_
B
\\
\begin{split}
\beta
&
=
\frac
{
I
_
C
}{
I
_
B
}
=
\frac
{
n
_{
pB
_
0
}
\frac
{
D
_
n
}{
W
_
B
}}{
p
_{
nE
_
0
}
\frac
{
D
_
p
}{
W
_
E
}}
\\
&
=
\frac
{
N
_{
dE
}
D
_
n W
_
E
}{
N
_{
aB
}
D
_
p W
_
B
}
\end{split}
\end{align}
Collector current,
focus on electron diffusion in base:
\begin{align}
n
_{
pB
}
(0)
&
=n
_{
pB
_
0
}
e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
\\
n
_{
pB
}
(x)
&
=n
_{
pB
}
(0)(1-
\frac
{
x
}{
W
_
B
}
)
\\
[1em]
\begin{split}
J
_{
nB
}
&
= qD
_
n
\frac
{
\mathrm
{
d
}
n
_{
pB
}}{
\mathrm
{
d
}
x
}
\\
&
= -qD
_
n
\frac
{
n
_{
pB
}
(0)
}{
W
_
B
}
\end{split}
\\
\begin{split}
I
_
C
&
=-J
_{
nB
}
A
_
E
\\
&
=qA
_
E
\frac
{
E
_
n
}{
W
_
B
}
n
_{
pB
_
0
}
e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
\end{split}
\\
I
_
C
&
= I
_
Se
^{
\frac
{
qV
_{
BE
}}{
kT
}}
\end{align}
Base current,
focus on hole injection and recombination in emitter:
\begin{align}
p
_{
nE
}
(-x
_{
BE
}
)
&
=p
_{
nE
_
0
}
e
^{
-
\frac
{
qV
_{
BE
}}{
kT
}}
\\
p
_{
nE
}
(-W
_
E-x
_{
BE
}
)
&
=p
_{
nE
_
0
}
\\
p
_{
nE
}
(x)
&
=
\left
[ p_{nE}(-x_{BE}-p_{nE_0}) \right]
\left
( 1+
\frac
{
x+x
_{
BE
}}{
W
_
E
}
\right
)+P
_{
nE
_
0
}
&
\leftarrow
\text
{
Hole Profile
}
\\
[1em]
\begin{split}
J
_{
pE
}&
=-qD
_
p
\frac
{
\mathrm
{
d
}
p
_{
nE
}}{
\mathrm
{
d
}
x
}
\\
&
=-qD
_
p
\frac
{
p
_{
nE(-x
_{
BE
}
)-p
_{
nE
_
0
}}}{
W
_
E
}
\end{split}
\\
\begin{split}
I
_
B
&
=-J
_{
pE
}
A
_
E
\\
&
=qA
_
E
\frac
{
D
_
p
}{
W
_
E
}
p
_{
nE
_
0
}
\left
( e
^{
\frac
{
qV
_{
VE
}}{
kT
}}
-1
\right
)
\end{split}
\\
I
_
B
&
=
\frac
{
I
_
S
}{
\beta
}
\left
(e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
-1
\right
)
\\
I
_
B
\approx\frac
{
I
_
C
}{
\beta
}
\end{align}
\subsubsection
{
`Good' transistor
}
We want collector and emitter current to be identical and so we define
$
\alpha
$
as measurement of how close we are:
\begin{align}
I
_
C
&
=-
\alpha
I
_
E
\\
&
=
\alpha\left
(I
_
B+I
_
C
\right
)
\\
&
=
\frac
{
\alpha
}{
1-
\alpha
}
I
_
B
\\
&
=
\beta
I
_
B
\\
\beta
&
=
\frac
{
\alpha
}{
1-
\alpha
}
\end{align}
\subsection
{
Summary forward active
}
\begin{align}
I
_
C
&
= I
_
Se
^{
\frac
{
qV
_{
BE
}}{
kT
}}
\\
I
_
B
&
=
\frac
{
I
_
S
}{
\beta
}
\left
(e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
-1
\right
)
\\
I
_
E
&
= -I
_
C-I
_
B
\end{align}
For reverse, it is the same but
$
\beta
_
R
\approx
[
0
.
1
,
5
]
\ll\beta
$
.
\subsection
{
Summary cut-off
}
\begin{alignat}
{
2
}
I
_{
B1
}
&
= -
\frac
{
I
_
S
}{
\beta
}
&
&
=-I
_
E
\\
I
_{
B2
}
&
=-
\frac
{
I
_
S
}{
\beta
_
R
}
&
&
=-I
_
C
\end{alignat}
\subsection
{
Summary saturation
}
\begin{align}
I
_
C
&
=I
_
S
\left
(e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
- e
^{
\frac
{
qV
_{
BC
}}{
kT
}}
\right
)-
\frac
{
I
_
S
}{
\beta
_
R
}
\left
( e
^
\frac
{
qV
_{
BC
}}{
kT
}
- 1
\right
)
\\
I
_
B
&
=
\frac
{
I
_
S
}{
\beta
}
\left
( e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
-1
\right
)+
\frac
{
I
_
S
}{
\beta
_
R
}
\left
( e
^{
\frac
{
qV
_{
BC
}}{
kT
}}
-1
\right
)
\\
I
_
E
&
=
\frac
{
I
_
S
}{
\beta
}
\left
(e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
- 1
\right
) - I
_
S
\left
( e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
-e
^{
\frac
{
qV
_{
BC
}}{
kT
}}
\right
)
\end{align}
\subsection
{
Ebers-Moll model
}
\begin{center}
\begin{circuitikz}
\draw
(0,0) node[left]
{
B
}
to [short,*-] ++(1,0)
to [Do,l=
$
\frac
{
I
_
S
}{
\beta
_
R
}
\left
(
e
^{
\frac
{
qV
_{
BC
}}{
kT
}}
-
1
\right
)
$
] ++(0,2)
to [short] ++(2,0)
to [I,l=
$
I
_
S
\left
(
e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
-
e
^{
\frac
{
qV
_{
BC
}}{
kT
}}
\right
)
$
,i=
$$
]
++(
0
,
-
4
)
to
[
short
]
++(-
1
,
0
)
;
\draw
(
1
,
0
)
to
[
Do,l
_
=
$
\frac
{
I
_
S
}{
\beta
}
\left
(
e
^{
\frac
{
qV
_{
BE
}}{
kT
}}
-
1
\right
)
$
]
++(
0
,
-
2
)
to
[
short
]
++(
1
,
0
)
to
[
short,
-*]
++(
0
,
-
1
)
node
[
below
]
{
E
}
;
\draw
(
2
,
2
)
to
[
short,
-*]
++(
0
,
1
)
node
[
above
]
{
C
}
;
\end
{
circuitikz
}
\end
{
center
}
\subsection
{
Early effect
}
With increasing $V
_{
CE
}
$, the depletion region inceases.
To not have to deal with that, we introduce a correction factor
\begin
{
equation
}
I
_
C
=
I
_
S e
^{
\frac
{
V
_{
BE
}}{
V
_{
th
}}}
\left
(
1
+
\frac
{
V
_{
CE
}}{
V
_
A
}
\right
)
\end
{
equation
}
\subsection
{
Transfer characteristics
}
We evaluate the transistor at its operating point
(
$OP$ or $Q
=(
V
_{
BE
}
,V
_{
CE
}
)
$
)
to find the transconductance $g
_
m$.
\begin
{
equation
}
\label
{
label:eq:bjt
_
transconductance
}
g
_
m
=
\left
.
\frac
{
\partial
i
_
C
}{
\partial
V
_{
BE
}}
\right
|
_{
OP
}
=
\frac
{
qI
_
C
}{
kT
}
\end
{
equation
}
This diff is collapsed.
Click to expand it.
imgs/bjt_terminals_and_functioning.png
0 → 100644
+
0
−
0
View file @
e60344e6
145 KiB
This diff is collapsed.
Click to expand it.
semiconductor_summary.tex
+
1
−
0
View file @
e60344e6
...
...
@@ -45,4 +45,5 @@
\include
{
05
_
pn
_
junction
_
bias
}
\include
{
06
_
pn
_
junction
_
diode
}
\include
{
07
_
diode
_
applications.tex
}
\include
{
08
_
bjt
}
\end{document}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment