Skip to content
Snippets Groups Projects
Verified Commit 6663f277 authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

add some diode magic

parent c97579e9
No related branches found
No related tags found
No related merge requests found
......@@ -67,6 +67,11 @@ Or so simplify
I_0 & = A q n_i^2 \left( \frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right)
\end{align}
Note that sometimes a non-ideality factor $n$ is used:
\begin{equation}
I = I_0\left(\exp\frac{qV}{nkT}-1\right)
\end{equation}
\subsection{PN junction reverse bias}
When applying a reverse bias, the depletion region gets wider and the electric field increases.
......
\section{Diode applications}
\subsection{Small signal}
If $i\ll I$ and $v\ll V$, then we can use the small signal approximation.
\begin{equation}
\begin{split}
I+i &= I_0\left(\exp\frac{q(V+v)}{kT}-1\right) \\
&=I_0\left(\exp\frac{q(V)}{kT}\exp\frac{q(v)}{kT}-1\right)\\
&\approx I_0\left(\exp\frac{q(V)}{kT}\left(1+\frac{qv}{kT}\right)-1\right)\\
&= I_0\left( \exp\frac{qV}{kT} - 1 \right) + I_0 \left( \exp\left(\frac{qV}{kT}\right)\frac{qv}{kT} \right)
\end{split}
\end{equation}
Which gives us the smallsignal current
\begin{align}
i & = \frac{q\left(I+I_0\right)}{kT}v = g_d v \\
g_d & = \frac{q\left(I+I_0\right)}{kT}
\end{align}
\subsubsection{Capacitances of small-signal model}
\begin{figure}[h]
\centering
\caption*{Small signal model for diode}
\begin{circuitikz}
\draw (-3,2) to [Do] (-3,0);
\draw[->] (-2,1) -- (-1,1);
\draw (0,0) to [R,l=$g_d$] (0,2);
\draw (2,0) to [C,l=$C_j$] (2,2);
\draw (4,0) to [C,l=$C_d$] (4,2);
\draw (0,0) to [short] (4,0);
\draw (0,2) to [short] (4,2);
\draw (2,2) to [short] (2,2.5);
\draw (2,-0.5) to [short] (2,0);
\end{circuitikz}
\end{figure}
\begin{align}
C_j & = \frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} \\
C_d & = \frac{q}{kT}\tau_T I \\
\tau_T & \equiv \text{equivalent transit time of carriers}
\end{align}
Where $C_j$ dominates in reverse bias and small forward bias,
and $C_d$ dominates in large forward bias ($V>\frac{\phi_B}{2}$).
\subsection{Large signal}
\subsubsection{Rectifier}
This is pretty much trivial.
\begin{center}
\begin{circuitikz}
\draw (0,-2) to [sV,l=$V_{in}$] ++(0,4)
to [short] ++(2,0)
to [Do,v=$V_D$] ++(0,-2)
to [R,l=$R_L$,v=$V_o$] ++(2,0)
to [Do] ++(0,-2)
to [short] (0,-2);
draw (4,0) to [Do] ++(0,2)
to [short] ++(-2,0);
\draw (2,-2) to [Do] ++(0,2);
\draw (4,0) to [Do] ++(0,2)
to [short] ++(-2,0);
\end{circuitikz}
\end{center}
\begin{equation}
V_o = V_{in}-2V_D
\end{equation}
\subsubsection{Voltage regulator}
\begin{center}
\begin{circuitikz}
\draw (0,0) to [V,v<=$10\pm1\ V$] (0,8)
to [short] ++(2,0)
to [R,l=$R_1$] ++(0,-2)
to [short] ++(0,-2)
to [Do] ++(0,-1)
to [Do] ++(0,-1)
to [Do] ++(0,-1)
to [short] ++(0,-1)
to [short] (0,0);
\draw (2,5) to [nos] ++(2,0)
to [R,l=$R_2$] ++(0,-5)
to [short] (0,0);
\end{circuitikz}
\end{center}
How to go about it:
\begin{align}
I & = \frac{V_{in}-\sum V_D}{R_1} \\
r_d & =\left[\frac{\mathrm{d}I_D}{\mathrm{d}V_d}\right]^{-1} =\frac{nV_t}{I_0} \\
r & = \sum r_d \\
\Delta V_o & = \Delta V_{in}\frac{r}{r+R_2} \\[1em]
n & \equiv\text{non-ideality factor} \\
V_t & = \frac{kT}{q}
\end{align}
Once the load is connected and draws current, we have a further small variation:
\begin{align}
I_{load} & = \frac{\sum V_D}{R_2} \\
\Delta V_o & = I_{load}r
\end{align}
\subsection{Special diode types}
\subsubsection{Zener}
Is heavily doped making the depletion layer extremely thing, and thus allowing for QM tunneling in reverse biased diode.
(In this case known as band-to-band tunneling.)
\begin{figure}[h]
\centering
\caption[short]{Band-bending zener diode}
\includegraphics[width=.75\textwidth]{imgs/zener_diode_band_bending.png}
\end{figure}
The voltage at which the diode starts conducting is called the zener voltage $V_Z$.
The diode then has a low resistance $R_Z$.
\subsubsection{Esaki}
Heavily doped with the tunneling effect in forward bias.
\begin{figure}[h]
\centering
caption{Esaki tunnel diode}
\includegraphics[width=.75\textwidth]{imgs/esaki_tunnel_diode.png}
\end{figure}
\subsubsection{Schottky}
A schottky diode has $I_0$ $10^3$ to $10^8$ times bigger than a PN diode.
Preferred in low voltage high current applications.
\subsubsection{Photodiodes}
\begin{equation}
I = I_0\left( e^{\frac{qV}{kT}} - 1\right)-I_{photo}
\end{equation}
\ No newline at end of file
imgs/esaki_tunnel_diode.png

293 KiB

imgs/zener_diode_band_bending.png

141 KiB

......@@ -44,4 +44,5 @@
\include{04_pn_junction}
\include{05_pn_junction_bias}
\include{06_pn_junction_diode}
\include{07_diode_applications.tex}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment