Skip to content
Snippets Groups Projects
Verified Commit 75504efb authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

Merge branch 'q1' into main

parents 5ffe0ab6 07018739
No related branches found
No related tags found
No related merge requests found
Showing with 767 additions and 7 deletions
\section{Fundamentals of semiconductor physics}
\section{Basics of semiconductor physics}
\subsection{Notation}
We only care about free electrons and define
\begin{equation}
\begin{split}
n &= \text{electron concentrations density}\ [cm^{-3}]\\
p &= \text{hole concentrations density}\ [cm^{-3}]\\
\end{split}
\end{equation}
\subsection{Band gap}
If an electron energy $E$ is large enough to overcome the bandgap $E_g$,
it can escape the valence band into the conduction band.
It then leaves behind a hole.
\begin{figure}[h]
\centering
\includegraphics[width=.6\textwidth]{imgs/band_gap_electorn_holes.png}
\caption{Band-gap electrons/holes}
\end{figure}
\subsection{Generation and recombination}
Generation is the breakup of covalent bonds,
which creates free electrons and holes.
This requires energy, either thermal or optical.
Assuming the atom density far larger than n or p (and thus bonds can be split defacto infinitely),
we have:
\begin{align}
G & = G_{th} + G_{opt} \\
R & \sim n\cdot p
\end{align}
In thermal equilibrium, the generation and recombination rates are equal:
\begin{align}
G_0 & = f(T)=R_0 \\
\Rightarrow n_0p_0 & =n_i^2(T)
\end{align}
\subsection{Doping}
Doners are in the 5th shell (V), usually As,P,Sb.
Acceptors are in the 3rd shell (III), usually B,Al,Ga,In.
For doners we have:
\begin{align}
n_0 & = N_d \\
p_0 & = \frac{n_i^2}{N_d}
\end{align}
\subsection{Charge neutrality}
Every semiconductor is neutral,
which imposes the following condition:
\begin{equation}
P_0-n_0+N_d + N_a = 0
\end{equation}
where $p_0n_0=n_i^2$.
\ No newline at end of file
\section{Carrier transport}
\subsection{Fermi distribution}
\label{label:sec:fermi}
Fermions are weird particles, see QM II.
Not sure if needed for this course,
but heres the probability distribution:
\begin{equation}
f(E) = \frac{1}{1+e^{(E-E_F)/kT}}
\end{equation}
Electron concentration in conductance band:
\begin{equation}
n=N_ce^{-(E_c-E_f)/kT}
\end{equation}
Hole concentration in valence band:
\begin{equation}
p=N_ve^{-(E_f-E_v)/kT}
\end{equation}
In intrinsic silicon ($n=p=n_i$) we have ($E_i$ somewhere in the middle of the bandgap)
\begin{equation}
E_i=E_f=\frac{E_c+E_v}{2}-\frac{kT}{q}\ln{\frac{N_c}{N_v}}
\end{equation}
Which gives us the useful relation:
\begin{equation}
n_i = \sqrt{N_cN_v}e^{-(E_c-E_v)/2kT} = \sqrt{N_cN_v}e^{-E_g/2kT}
\end{equation}
\subsection{Behaviour in thermal equilibrium}
\begin{align}
\lambda & \equiv \text{mean free path} [cm] \\
\tau_c & \equiv \text{mean time between collisions} [s^{-1}] \\
v_{th} & \equiv \text{thermal velocity} [cm/s] \\[1em]
\lambda & = v_{th}\cdot\tau_c
\end{align}
\subsection{Drift velocity}
Quick electromag recap: (for holes use + and $m_p$)
\begin{align}
F & = -qE \\
v(t) & =-\frac{qE}{m_n}t
\end{align}
Average drift velocity:
\begin{equation}
v_d = \pm \frac{qE\tau_c}{2m_{n,p}}
\end{equation}
\subsection{Mobility}
For the sake of simplicity, let's define mobility for both holes and electrons.
(These values are usually found in diagrams.)
\begin{align}
\mu_{n,p} & = \frac{q\tau_c}{2m_{n,p}} \equiv \text{mobility}\ [cm^2/Vs] \\
v_{dn} & =-\mu_nE \\
v_{dp} & = \mu_pE \\
\mu_n & >_mu_p
\end{align}
\subsection{Drift current}
For the net drift current density slap together velocity, density and charge.
\begin{equation}
label{eq:drift_current}
J^{drift} = J_n^{drift}+J_p^{drift} = q(n\mu_n+p\mu_p)E
\end{equation}
From which we can find Ohm's law:
\begin{alignat}{2}
J & =\sigma E & & = \frac{E}{\rho} \\
\rho & =\frac{1}{\sigma} & & = \frac{1}{q \left(n\mu_n+p\mu_p\right)}
\end{alignat}
Which gives us different resistances for n and p type semiconductors.
\begin{align}
\rho_n & \approx \frac{1}{qN_d\mu_n} \\
\rho_p & \approx \frac{1}{qN_a\mu_p}
\end{align}
\subsection{Diffusion current}
If there is a concentration gradient,
the carriers will diffuse to equalize the concentration.
Here flux $F \ [cm^{-2}s^{-1}]$ is the number of electrons/holes per unit area per unit time.
\begin{align}
F_n & = -D_n\frac{\mathrm{d} n}{\mathrm{d} x} \\
F_p & = -D_p\frac{\mathrm{d} p}{\mathrm{d} x}
\end{align}
Which gives us the diffusion current density:
(Defined as density times charge,
ergo the double negative for electron diffusion.)
\begin{align}
J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \label{label:eq:diff_current_n} \\
J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} \label{label:eq:diff_current_p}
\end{align}
\subsection{Einstein relation between mobility and diffusion coefficient}
\label{label:sss:einstein_rel_mob_diff}
\begin{equation}
\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q^2}
\end{equation}
\subsection{Total current}
\begin{alignat}{2}
J_{total} & =J_n+J_p & & \\
J_n & =J_n^{drift}+J_n^{diff} & & =qn\mu_nE+qD_n\frac{\mathrm{d} n}{\mathrm{d} x}\label{label:eq:electron_current_density} \\
J_p & =J_p^{drift}+J_p^{diff} & & =qp\mu_pE-qD_p\frac{\mathrm{d} p}{\mathrm{d} x}
\end{alignat}
\ No newline at end of file
\section{PN junction basics}
\subsection{Uniformly doped semiconductor}
Assuming n type (i.e. lots of electrons, few holes) semiconductor with a uniform doping profile,
we have the following volume charge density.
\begin{align}
n_0 & = N_d \\
\rho & = q\left(N_d-n_0\right)=0 \ \left[C/cm^{3}\right]
\end{align}
\subsection{Non-uniformly doped semiconductor}
At thermal equilibrium, the total current must be 0.
Because we have non-uniform doping,
we need the drift current to balance the diffusion current.
(For both electrons and holes.)
\begin{equation}
J_n(x)=J_n^{drift}(x)+J_n^{diff}(x)=0
\end{equation}
Which implies
\begin{equation}
n(x)\neq N_d(x)
\end{equation}
Which gives us the space charge density
\begin{equation}
\label{label:eq:electron_space_charge_density}
\rho(x)=q\left[N_d(x)-n(x)\right]\neq 0
\end{equation}
This results in a potential difference (quick electromag recap):
\begin{align}
\frac{\mathrm{d}E}{\mathrm{d}x} & = -\frac{\rho}{\varepsilon} \label{label:eq:def_electric_field_differential} \\
E(x)-E(0) & =\frac{1}{\varepsilon}\int_{0}^{x}\rho(x')\,\mathrm{d}x' \label{label:eq:def_electric_field_integral}
\end{align}
Since there is an electric field, there's a potential.
\begin{align}
\frac{\mathrm{d}\phi}{\mathrm{d}x} & = -E \\
\phi(x)-\phi(0) & =-\int_{0}^{x}E(x')\,\mathrm{d}x'
\end{align}
By combining eq \eqref{label:eq:electron_current_density} ,
\eqref{label:eq:electron_space_charge_density},
and \eqref{label:eq:def_electric_field_differential} we find
\begin{equation}
\frac{\mathrm{d}^2}{\mathrm{d}x^2}\ln{n(x)} = \frac{q^2}{\varepsilon kT}\left(n(x)-N_d(x)\right)
\end{equation}
\subsection{Quasi-neutral approximation}
If the doping changes slowly with x:
\begin{equation}
n(x)\approx N_c(x)
\end{equation}
\subsection{Boltzman relation between $n$ and $\phi$}
We saw in \autoref{label:sss:einstein_rel_mob_diff} the relation between mobility and diffusion coefficients.
From this we find
\begin{align}
n & =n_{ref}e^{q(\phi-\phi_{ref})/kT} \\
\phi_{ref} & =0 \\
n_{ref} & =n_i
\end{align}
And by extension
\begin{align}
n & = n_i e^{q\phi/kT} \\
p & =n_ie^{-q\phi/kT}
\end{align}
Rearranging the above, we find an expression for the potential:
\begin{align}
\phi & =\frac{kT}{q}\ln\frac{n}{n_i} \label{label:eq:boltzman:phi_n} \\
\phi & = -\frac{kT}{q}\ln\frac{p}{n_i} \label{label:eq:boltzman:phi_p}
\end{align}
For Si at room temperature this is an increase of 60 mV per decade in doping.
\begin{equation}
\phi\approx(60\,\mathrm{mV})\log_{10}\frac{n}{10^{10}}
\end{equation}
\section{PN junction}
\subsection{What are we even doing}
We stick together n and p doped regions, such that the doping effectively becomes a step function.
This causes majority carriers (electrons in n region, holes in p region) to diffuse the minority carrier side,
resulting in a new equilibrium (\autoref{label:fig:pn_carrier_profile_equilibrium}).
\begin{figure}[h]
\centering
\begin{subfigure}[b]{.45\textwidth}
\includegraphics[width=\textwidth]{imgs/pn_carrier_profile_equilibrium.png}
\caption{Resulting carrier profile in thermal equilibrium}
\label{label:fig:pn_carrier_profile_equilibrium}
\end{subfigure}
\hfill
\begin{subfigure}[b]{.45\textwidth}
\includegraphics[width=\textwidth]{imgs/pn_fermi_level_band_bending.png}
\caption{Resulting carrier profile in thermal equilibrium}
\label{label:fig:pn_fermi_level_band_bending}
\end{subfigure}
\end{figure}
As can be seen in \autoref{label:fig:pn_fermi_level_band_bending},
the energy levels for conduction and valence bands bend, whereas the fermi level remains constant.
\subsection{Depletion approximation}
We assume p and n regions quasi-neutral,
and the intermediate space charge region to be completely depleted of carriers.
We further assume all transitions are expressed as step-functions.
This allows the following simplified equations:
\begin{align}
\rho(x) & = \begin{dcases}
0 & x<-x_p \\
-qN_a & -x_p<x<0 \\
qN_d & 0<x<x_n \\
0 & x_n<x
\end{dcases} \\
E(x) & =\begin{dcases}
0 & x<-x_p \\
-\frac{qN_a}{\varepsilon}(x+x_p) & - x_p<x<0 \\
\frac{qN_d}{\varepsilon}(x-x_n) & 0<x<x_n \\
0 & x_n<x
\end{dcases}
\end{align}
Where $E$ is found using \eqref{label:eq:def_electric_field_integral}.
\subsection{Electrostatic potential - (Width of the depletion zone)}
Because of overall charge neutrality
\begin{equation}
qN_ax_p = qN_cx_n
\end{equation}
and continuity of the potential at the junction interface
\begin{equation}
\phi_p+\frac{qN_a}{2\varepsilon}x_p^2 = \phi_n-\frac{qN_d}{2\varepsilon}x_n^2
\end{equation}
we can find $x_n$ and $x_p$:
\begin{align}
x_n & = \sqrt{\frac{2\varepsilon\phi_BN_a}{qN_d(N_a+N_d)}} \\
x_p & = \sqrt{\frac{2\varepsilon\phi_BN_d}{qN_a(N_a+N_d)}}
\end{align}
Where $\phi_B$ is the built-in potential, which is the potential over the junction.
Also, it is the less heavily doped region that defines the junction width.
It is also in the less heavily doped region that the depletion zone extends farther.
\subsection{Contact potential}
Although there is a potential accross the diode, it cannot be measured because there are the metal semi-conductor junctions for both p and n regions.
\begin{equation}
\phi_B = \phi_mn+\phi_mp
\end{equation}
\ No newline at end of file
\section{PN junction bias}
\subsection{Model}
We can see the junction as a series of resistors as follows.
(Junction $V_{pn}>0$ is a forward bias, QNR is a quasi-neutral region.)
\begin{center}
\begin{circuitikz}
\draw (0,0) to[R, l=$R_{mp}$] ++(2,0)
to [R, l=\textnormal{p-QNR}] ++(2,0)
to [R, l=\textnormal{SCR}] ++(2,0)
to [R, l=\textnormal{n-QNR}] ++(2,0)
to [R, l=$R_{mn}$] (10,0);
\draw (0,0) to [short] (0,2)
to [V, v=$V_{pn}$] (10,2)
to [short] (10,0);
\begin{scope}[opacity=.5]
\draw (1,-1) rectangle (9,1);
\draw (4,-1) -- (4,1);
\draw (6,-1) -- (6,1);
\draw[dotted] (5,-1) -- (5,1);
\end{scope}
\node at (2.5,-1.5) {p-QNR};
\node at (5,-1.5) {SCR};
\node at (7.5,-1.5) {n-QNR};
\node at (4.5,-0.5) {$-$};
\node at (5.5,-0.5) {$+$};
\end{circuitikz}
\end{center}
Importantly, the SCR resistance ist the most important one and others can be neglected.
\subsection{Space charge region (SCR)}
In essence, applying a forward/reverse bias effects the depletion region:
\begin{align}
\phi_B & \rightarrow \phi_B-V_{pn} \\
x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\
x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\
x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_dN_a}{q(N_a+N_d)}} \\
\left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V)(N_aN_d)}{\varepsilon(N_a+N_d)}}
\end{align}
In the case of a strongly doped $p^+n$ junction,
we can approximate the SCR since it exists only in the lesser doped region.
\begin{equation}
x_n(V)=x_{n0}\sqrt{a-\frac{V}{\phi_B}}
\end{equation}
\subsection{PN small-signal capacitance}
In reverse bias, the PN junction acts as a capacitor.
\begin{equation}
C_{j0} = \frac{\varepsilon}{W_{dep}}
\end{equation}
So as a function of the bias voltage, we get
\begin{equation}
\begin{split}
C_j(V) &= \frac{\varepsilon}{x_c(V)}\\
&=\sqrt{\frac{q\varepsilon N_aN_d}{2q(\phi_B-V)(N_a+N_d)}}\\
&=\frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}}
\end{split}
\end{equation}
In a strongly asymmetric junction $p^+n$
\begin{equation}
\frac{1}{C_j^2} \approx \frac{2(\phi_B-V)}{q\varepsilon N_d}
\end{equation}
\section{PN junction diode}
\subsection{Carrier concentration under bias}
Under forward bias, the net current is no longer zero.
\begin{equation}
\left| J_{drift} \right|<\left| J_{diff} \right|
\end{equation}
Which causes injection of minority carriers into the QNR regions giving rise to `high' currents.
\subsection{Diode current}
To calculate the current, we \begin{enumerate}
\item Calculate concentration of minority carriers at the edges of SCR
\item Calculate minority carrier diffusion current in each QNR for $I_n$ and $I_p$
\item Sum the currents $I_n$ and $I_p$
\end{enumerate}
\subsubsection{Minority carrier conditions}
We use the quasi-equilibrium equation to misuse equations for equilibrium.
\begin{align}
\frac{n(x_1)}{n(x_2)} & \approx \exp{\frac{q(\phi(x_1)-\phi(x_2))}{kT}} \\
\frac{p(x_1)}{p(x_2)} & \approx \exp{\frac{-q(\phi(x_1)-\phi(x_2))}{kT}}
\end{align}
So by using $x_n$ and $x_p$ in the above equation we have the following:
\begin{align}
\frac{n(x_n)}{n(-x_p)} & \approx \exp{\frac{q(\phi_B-V)}{kT}} \\
\frac{p(x_n)}{p(-x_p)} & \approx \exp{\frac{-q(\phi_B-V)}{kT}} \\
p(-x_p) & =N_a \\
n(x_n) & =N_d
\end{align}
And so we find what we needed:
\begin{align}
n(-x_p) & \approx N_d\exp\frac{q(V-\phi_B)}{kT} \\
p(x_n) & \approx N_a\exp\frac{q(V-\phi_B)}{kT}
\end{align}
Then by using the Boltzman relations \eqref{label:eq:boltzman:phi_n} and \eqref{label:eq:boltzman:phi_p} we find
\begin{align}
\phi_B & = \frac{kT}{q}\ln\frac{N_dN_a}{n_i^2} \\
\Rightarrow n(-x_p) & \approx \frac{n_i^2}{N_a}\exp\frac{qV}{kT} \\
\Rightarrow p(x_n) & \approx \frac{n_i^2}{N_d}\exp\frac{qV}{kT}
\end{align}
\subsubsection{Diffusion current in QNR}
We assume a linear gradient between $n(-W_p)$ and $n(-x_p)$ to easily use \eqref{label:eq:diff_current_n} to find
\begin{equation}
\begin{split}
J_n^{diff} &= qD_n\frac{n_p(-x_p)-n_p(-W_p)}{W_p-x_p}\\
&= qD_n \frac{\left(\frac{n_i^2}{N_a}\exp{\frac{qV}{kT}}\right)-\frac{n_i^2}{N_a}}{W_p-x_p}\\
&= q\frac{n_i^2}{N_a}\frac{D_n}{W_p-x_p}\left(\exp{\frac{qV}{kT}}-1\right)
\end{split}
\end{equation}
\subsubsection{Total diode current}
\begin{equation}
\begin{split}
J & = J_n+J_p \\
& =q n_i^2 \left( \frac{1}{N_A}\frac{D_n}{W_p-x_p} + \frac{1}{N_D}\frac{D_p}{W_n-x_n} \right)\left(\exp
\frac{qV}{kT} - 1\right)
\end{split}
\end{equation}
Or so simplify
\begin{align}
I & =I_0\left(\exp\frac{qV}{kT}-1\right) \\
I_0 & = A q n_i^2 \left( \frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right)
\end{align}
Note that sometimes a non-ideality factor $n$ is used:
\begin{equation}
I = I_0\left(\exp\frac{qV}{nkT}-1\right)
\end{equation}
\subsection{PN junction reverse bias}
When applying a reverse bias, the depletion region gets wider and the electric field increases.
There comes a point when the diode breaks down and destroys itself.
\begin{equation}
W_{dep} = \sqrt{\frac{2\varepsilon}{q}\left(\frac{1}{N_A}+\frac{1}{N_D}\right)\left(V_0+V_R\right)}
\end{equation}
\ No newline at end of file
\section{Diode applications}
\subsection{Small signal}
If $i\ll I$ and $v\ll V$, then we can use the small signal approximation.
\begin{equation}
\begin{split}
I+i &= I_0\left(\exp\frac{q(V+v)}{kT}-1\right) \\
&=I_0\left(\exp\frac{q(V)}{kT}\exp\frac{q(v)}{kT}-1\right)\\
&\approx I_0\left(\exp\frac{q(V)}{kT}\left(1+\frac{qv}{kT}\right)-1\right)\\
&= I_0\left( \exp\frac{qV}{kT} - 1 \right) + I_0 \left( \exp\left(\frac{qV}{kT}\right)\frac{qv}{kT} \right)
\end{split}
\end{equation}
Which gives us the smallsignal current
\begin{align}
i & = \frac{q\left(I+I_0\right)}{kT}v = g_d v \\
g_d & = \frac{q\left(I+I_0\right)}{kT}
\end{align}
\subsubsection{Capacitances of small-signal model}
\begin{figure}[h]
\centering
\caption*{Small signal model for diode}
\begin{circuitikz}
\draw (-3,2) to [Do] (-3,0);
\draw[->] (-2,1) -- (-1,1);
\draw (0,0) to [R,l=$g_d$] (0,2);
\draw (2,0) to [C,l=$C_j$] (2,2);
\draw (4,0) to [C,l=$C_d$] (4,2);
\draw (0,0) to [short] (4,0);
\draw (0,2) to [short] (4,2);
\draw (2,2) to [short] (2,2.5);
\draw (2,-0.5) to [short] (2,0);
\end{circuitikz}
\end{figure}
\begin{align}
C_j & = \frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} \\
C_d & = \frac{q}{kT}\tau_T I \\
\tau_T & \equiv \text{equivalent transit time of carriers}
\end{align}
Where $C_j$ dominates in reverse bias and small forward bias,
and $C_d$ dominates in large forward bias ($V>\frac{\phi_B}{2}$).
\subsection{Large signal}
\subsubsection{Rectifier}
This is pretty much trivial.
\begin{center}
\begin{circuitikz}
\draw (0,-2) to [sV,l=$V_{in}$] ++(0,4)
to [short] ++(2,0)
to [Do,v=$V_D$] ++(0,-2)
to [R,l=$R_L$,v=$V_o$] ++(2,0)
to [Do] ++(0,-2)
to [short] (0,-2);
draw (4,0) to [Do] ++(0,2)
to [short] ++(-2,0);
\draw (2,-2) to [Do] ++(0,2);
\draw (4,0) to [Do] ++(0,2)
to [short] ++(-2,0);
\end{circuitikz}
\end{center}
\begin{equation}
V_o = V_{in}-2V_D
\end{equation}
\subsubsection{Voltage regulator}
\begin{center}
\begin{circuitikz}
\draw (0,0) to [V,v<=$10\pm1\ V$] (0,8)
to [short] ++(2,0)
to [R,l=$R_1$] ++(0,-2)
to [short] ++(0,-2)
to [Do] ++(0,-1)
to [Do] ++(0,-1)
to [Do] ++(0,-1)
to [short] ++(0,-1)
to [short] (0,0);
\draw (2,5) to [nos] ++(2,0)
to [R,l=$R_2$] ++(0,-5)
to [short] (0,0);
\end{circuitikz}
\end{center}
How to go about it:
\begin{align}
I & = \frac{V_{in}-\sum V_D}{R_1} \\
r_d & =\left[\frac{\mathrm{d}I_D}{\mathrm{d}V_d}\right]^{-1} =\frac{nV_t}{I_0} \\
r & = \sum r_d \\
\Delta V_o & = \Delta V_{in}\frac{r}{r+R_2} \\[1em]
n & \equiv\text{non-ideality factor} \\
V_t & = \frac{kT}{q}
\end{align}
Once the load is connected and draws current, we have a further small variation:
\begin{align}
I_{load} & = \frac{\sum V_D}{R_2} \\
\Delta V_o & = I_{load}r
\end{align}
\subsection{Special diode types}
\subsubsection{Zener}
Is heavily doped making the depletion layer extremely thing, and thus allowing for QM tunneling in reverse biased diode.
(In this case known as band-to-band tunneling.)
\begin{figure}[h]
\centering
\caption[short]{Band-bending zener diode}
\includegraphics[width=.75\textwidth]{imgs/zener_diode_band_bending.png}
\end{figure}
The voltage at which the diode starts conducting is called the zener voltage $V_Z$.
The diode then has a low resistance $R_Z$.
\subsubsection{Esaki}
Heavily doped with the tunneling effect in forward bias.
\begin{figure}[h]
\centering
caption{Esaki tunnel diode}
\includegraphics[width=.75\textwidth]{imgs/esaki_tunnel_diode.png}
\end{figure}
\subsubsection{Schottky}
A schottky diode has $I_0$ $10^3$ to $10^8$ times bigger than a PN diode.
Preferred in low voltage high current applications.
\subsubsection{Photodiodes}
\begin{equation}
I = I_0\left( e^{\frac{qV}{kT}} - 1\right)-I_{photo}
\end{equation}
\ No newline at end of file
\section{Bipolar junction transistor (BJT)}
\begin{figure}[h]
\centering
\caption{BJT}
\includegraphics[width=.75\textwidth]{imgs/bjt_terminals_and_functioning.png}
\end{figure}
But what's going on?
If $V_{BE}>0$ injection of electrons from E to B, of holes from B to E.
If $V_{BC}<0$ extraction of electrons from B to C, of holes from C to B.
\subsection{BJT characteristics}
\begin{align}
I_E & = -I_C-I_B \\
\begin{split}
\beta &= \frac{I_C}{I_B}
=\frac{n_{pB_0}\frac{D_n}{W_B}}{p_{nE_0}\frac{D_p}{W_E}}\\
&= \frac{N_{dE} D_n W_E}{N_{aB} D_p W_B}
\end{split}
\end{align}
Collector current,
focus on electron diffusion in base:
\begin{align}
n_{pB}(0) & =n_{pB_0}e^{\frac{qV_{BE}}{kT}} \\
n_{pB}(x) & =n_{pB}(0)(1-\frac{x}{W_B}) \\[1em]
\begin{split}
J_{nB} &= qD_n\frac{\mathrm{d} n_{pB}}{\mathrm{d}x}\\
&= -qD_n\frac{n_{pB}(0)}{W_B}
\end{split} \\
\begin{split}
I_C &=-J_{nB}A_E\\
&=qA_E\frac{E_n}{W_B}n_{pB_0}e^{\frac{qV_{BE}}{kT}}
\end{split} \\
I_C & = I_Se^{\frac{qV_{BE}}{kT}}
\end{align}
Base current,
focus on hole injection and recombination in emitter:
\begin{align}
p_{nE}(-x_{BE}) & =p_{nE_0}e^{-\frac{qV_{BE}}{kT}} \\
p_{nE}(-W_E-x_{BE}) & =p_{nE_0} \\
p_{nE}(x) & =\left[ p_{nE}(-x_{BE}-p_{nE_0}) \right]\left( 1+\frac{x+x_{BE}}{W_E} \right)+P_{nE_0} & \leftarrow \text{Hole Profile} \\[1em]
\begin{split}
J_{pE}&=-qD_p\frac{\mathrm{d}p_{nE}}{\mathrm{d}x}\\
&=-qD_p\frac{p_{nE(-x_{BE})-p_{nE_0}}}{W_E}
\end{split} \\
\begin{split}
I_B&=-J_{pE}A_E\\
&=qA_E\frac{D_p}{W_E}p_{nE_0}\left( e^{\frac{qV_{VE}}{kT}} -1 \right)
\end{split} \\
I_B & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\
I_B\approx\frac{I_C}{\beta}
\end{align}
\subsubsection{`Good' transistor}
We want collector and emitter current to be identical and so we define $\alpha$ as measurement of how close we are:
\begin{align}
I_C & =-\alpha I_E \\
& =\alpha\left(I_B+I_C\right) \\
& =\frac{\alpha}{1-\alpha}I_B \\
& =\beta I_B \\
\beta & =\frac{\alpha}{1-\alpha}
\end{align}
\subsection{Summary forward active}
\begin{align}
I_C & = I_Se^{\frac{qV_{BE}}{kT}} \\
I_B & = \frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\
I_E & = -I_C-I_B
\end{align}
For reverse, it is the same but $\beta_R\approx [0.1,5]\ll\beta$.
\subsection{Summary cut-off}
\begin{alignat}{2}
I_{B1} & = -\frac{I_S}{\beta} & & =-I_E \\
I_{B2} & =-\frac{I_S}{\beta_R} & & =-I_C
\end{alignat}
\subsection{Summary saturation}
\begin{align}
I_C & =I_S\left(e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}}\right)-\frac{I_S}{\beta_R}\left( e^\frac{qV_{BC}}{kT} - 1 \right) \\
I_B & =\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)+\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right) \\
I_E & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}} - 1\right) - I_S\left( e^{\frac{qV_{BE}}{kT}} -e^{\frac{qV_{BC}}{kT}} \right)
\end{align}
\subsection{Ebers-Moll model}
\begin{center}
\begin{circuitikz}
\draw (0,0) node[left] {B} to [short,*-] ++(1,0)
to [Do,l=$\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right)$] ++(0,2)
to [short] ++(2,0)
to [I,l=$I_S\left( e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}} \right)$,i=$$] ++(0,-4)
to [short] ++(-1,0);
\draw (1,0) to [Do,l_=$\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)$] ++(0,-2)
to [short] ++(1,0)
to [short,-*] ++(0,-1) node [below] {E};
\draw (2,2) to [short,-*] ++(0,1) node[above] {C};
\end{circuitikz}
\end{center}
\subsection{Early effect}
With increasing $V_{CE}$, the depletion region inceases.
To not have to deal with that, we introduce a correction factor
\begin{equation}
I_C = I_S e^{\frac{V_{BE}}{V_{th}}}\left(1+\frac{V_{CE}}{V_A}\right)
\end{equation}
\subsection{Transfer characteristics}
We evaluate the transistor at its operating point ($OP$ or $Q=(V_{BE},V_{CE})$) to find the transconductance $g_m$.
\begin{equation}
\label{label:eq:bjt_transconductance}
g_m = \left. \frac{\partial i_C}{\partial V_{BE}} \right|_{OP} = \frac{qI_C}{kT}
\end{equation}
\section{BJT small signal}
\begin{center}
\begin{circuitikz}
\draw (0,2) node[left]{B} to [short,i=$i_b$ , *-] ++(1,0)
to [R,l=$r_{be}$,v=$v_{be}$] ++(0,-2)
to [short] ++(2,0)
to [cI,l_=$g_mv_{be}$,i<=$$] ++(0,2)
to [short] ++(2,0)
to [R,l=$r_{o}$] ++(0,-2)
to [short] ++(-2,0)
to [short,i=$i_e$,-*] ++(0,-1)node[below]{E}
++(2,3)
to [short,i<=$i_c$,-*] ++(1,0) node[right]{C};
% to [open,v_=$v_{ce}$] ++(0,-2);
\end{circuitikz}
\end{center}
\subsection{Transistor amplifiers, 2 step analysis}
\begin{enumerate}
\item DC analysis
\begin{enumerate}
\item Get DC equivalent circuit (rm C, cc L)
\item Find OP using large signal model of transistor
\end{enumerate}
\item AC analysis
\begin{enumerate}
\item Get AC equivalent circuit (cc C, rm L)
\item Replace transistor with small signal model
\item Use small-signal AC model to find characteristics
\item Combine AC and DC analysis
\end{enumerate}
\end{enumerate}
......@@ -27,6 +27,11 @@
\usepackage{subcaption}
\usepackage{graphicx, xcolor}
\usepackage[european,straightvoltages]{circuitikz}
\usepackage{tikz}
\usepackage{url}
\usepackage[pdfusetitle]{hyperref}
\hypersetup{
......@@ -50,3 +55,7 @@
\rhead{\today}
\lhead{}
\cfoot{\thepage}
\numberwithin{equation}{subsection}
imgs/band_gap_electorn_holes.png

363 KiB

imgs/bjt_terminals_and_functioning.png

145 KiB

imgs/esaki_tunnel_diode.png

293 KiB

imgs/pn_carrier_profile_equilibrium.png

32.1 KiB

imgs/pn_fermi_level_band_bending.png

102 KiB

imgs/zener_diode_band_bending.png

141 KiB

......@@ -2,7 +2,7 @@
\title{Micro and nanoelectronic devices \\ PHYS-201(d)}
\title{Micro and nanoelectronic devices \\ EE-333}
\author{Simon Thür}
\date{ \today \\ \small{ Version 0.1 } }
......@@ -13,24 +13,38 @@
\thispagestyle{empty}
This summary for
\href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{Micro and nanoelectronic devices}
© 2021 by
\href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{micro and nanoelectronic devices}
© 2023 by
\href{https://gitlab.epfl.ch/sthuer}{Simon Thür}
is licensed under
\href{http://creativecommons.org/licenses/by/4.0/}{CC BY 4.0}.
To view a copy of this license, visit
\url{http://creativecommons.org/licenses/by/4.0/}
To see the source code, visit \href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{https://gitlab.epfl.ch/sthuer/semiconductors\_summary}
\section*{Introductory remarks}
This is a summary of Prof Ionescu's course on semiconductor devices.
It follows the course structure but does not retain the same enumeration.
Since the reference material is in english, this summary is also in english.
The aim of this summary is to provide a denser overview of the course material.
Specifically, it is intended to be used as a reference for the exam,
which is why it has only few remarks and focuses mainly on equations with little regard for how they were derived.
\end{titlepage}
\tableofcontents
\include{01_fundamentals}
\include{01_fundamentals.tex}
\include{02_carrier_transport.tex}
\include{03_pn_junction_basics.tex}
\include{04_pn_junction.tex}
\include{05_pn_junction_bias.tex}
\include{06_pn_junction_diode.tex}
\include{07_diode_applications.tex}
\include{08_bjt.tex}
\include{09_bjt_small_signal.tex}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment