diff --git a/01_fundamentals.tex b/01_fundamentals.tex index 9ef66cd787c6e7294e9e39e94d56309034405ac2..0952adb19827c5131870e5b5c4da3f42abaef31f 100644 --- a/01_fundamentals.tex +++ b/01_fundamentals.tex @@ -1 +1,55 @@ -\section{Fundamentals of semiconductor physics} +\section{Basics of semiconductor physics} +\subsection{Notation} +We only care about free electrons and define +\begin{equation} + \begin{split} + n &= \text{electron concentrations density}\ [cm^{-3}]\\ + p &= \text{hole concentrations density}\ [cm^{-3}]\\ + \end{split} +\end{equation} + +\subsection{Band gap} +If an electron energy $E$ is large enough to overcome the bandgap $E_g$, +it can escape the valence band into the conduction band. +It then leaves behind a hole. +\begin{figure}[h] + \centering + \includegraphics[width=.6\textwidth]{imgs/band_gap_electorn_holes.png} + \caption{Band-gap electrons/holes} +\end{figure} + +\subsection{Generation and recombination} +Generation is the breakup of covalent bonds, +which creates free electrons and holes. +This requires energy, either thermal or optical. +Assuming the atom density far larger than n or p (and thus bonds can be split defacto infinitely), +we have: +\begin{align} + G & = G_{th} + G_{opt} \\ + R & \sim n\cdot p +\end{align} + + +In thermal equilibrium, the generation and recombination rates are equal: +\begin{align} + G_0 & = f(T)=R_0 \\ + \Rightarrow n_0p_0 & =n_i^2(T) +\end{align} + + +\subsection{Doping} +Doners are in the 5th shell (V), usually As,P,Sb. +Acceptors are in the 3rd shell (III), usually B,Al,Ga,In. +For doners we have: +\begin{align} + n_0 & = N_d \\ + p_0 & = \frac{n_i^2}{N_d} +\end{align} + +\subsection{Charge neutrality} +Every semiconductor is neutral, +which imposes the following condition: +\begin{equation} + P_0-n_0+N_d + N_a = 0 +\end{equation} +where $p_0n_0=n_i^2$. \ No newline at end of file diff --git a/02_carrier_transport.tex b/02_carrier_transport.tex new file mode 100644 index 0000000000000000000000000000000000000000..51d5be0abbde6174d71ace8867bad6b9f0ca8571 --- /dev/null +++ b/02_carrier_transport.tex @@ -0,0 +1,109 @@ +\section{Carrier transport} +\subsection{Fermi distribution} +\label{label:sec:fermi} +Fermions are weird particles, see QM II. +Not sure if needed for this course, +but heres the probability distribution: +\begin{equation} + f(E) = \frac{1}{1+e^{(E-E_F)/kT}} +\end{equation} + +Electron concentration in conductance band: +\begin{equation} + n=N_ce^{-(E_c-E_f)/kT} +\end{equation} +Hole concentration in valence band: +\begin{equation} + p=N_ve^{-(E_f-E_v)/kT} +\end{equation} + +In intrinsic silicon ($n=p=n_i$) we have ($E_i$ somewhere in the middle of the bandgap) +\begin{equation} + E_i=E_f=\frac{E_c+E_v}{2}-\frac{kT}{q}\ln{\frac{N_c}{N_v}} +\end{equation} + +Which gives us the useful relation: +\begin{equation} + n_i = \sqrt{N_cN_v}e^{-(E_c-E_v)/2kT} = \sqrt{N_cN_v}e^{-E_g/2kT} +\end{equation} + + +\subsection{Behaviour in thermal equilibrium} +\begin{align} + \lambda & \equiv \text{mean free path} [cm] \\ + \tau_c & \equiv \text{mean time between collisions} [s^{-1}] \\ + v_{th} & \equiv \text{thermal velocity} [cm/s] \\[1em] + \lambda & = v_{th}\cdot\tau_c +\end{align} + + +\subsection{Drift velocity} +Quick electromag recap: (for holes use + and $m_p$) +\begin{align} + F & = -qE \\ + v(t) & =-\frac{qE}{m_n}t +\end{align} + +Average drift velocity: +\begin{equation} + v_d = \pm \frac{qE\tau_c}{2m_{n,p}} +\end{equation} + +\subsection{Mobility} +For the sake of simplicity, let's define mobility for both holes and electrons. +(These values are usually found in diagrams.) +\begin{align} + \mu_{n,p} & = \frac{q\tau_c}{2m_{n,p}} \equiv \text{mobility}\ [cm^2/Vs] \\ + v_{dn} & =-\mu_nE \\ + v_{dp} & = \mu_pE \\ + \mu_n & >_mu_p +\end{align} + +\subsection{Drift current} +For the net drift current density slap together velocity, density and charge. +\begin{equation} + label{eq:drift_current} + J^{drift} = J_n^{drift}+J_p^{drift} = q(n\mu_n+p\mu_p)E +\end{equation} +From which we can find Ohm's law: +\begin{alignat}{2} + J & =\sigma E & & = \frac{E}{\rho} \\ + \rho & =\frac{1}{\sigma} & & = \frac{1}{q \left(n\mu_n+p\mu_p\right)} +\end{alignat} +Which gives us different resistances for n and p type semiconductors. +\begin{align} + \rho_n & \approx \frac{1}{qN_d\mu_n} \\ + \rho_p & \approx \frac{1}{qN_a\mu_p} +\end{align} + + +\subsection{Diffusion current} +If there is a concentration gradient, +the carriers will diffuse to equalize the concentration. +Here flux $F \ [cm^{-2}s^{-1}]$ is the number of electrons/holes per unit area per unit time. +\begin{align} + F_n & = -D_n\frac{\mathrm{d} n}{\mathrm{d} x} \\ + F_p & = -D_p\frac{\mathrm{d} p}{\mathrm{d} x} +\end{align} + +Which gives us the diffusion current density: +(Defined as density times charge, +ergo the double negative for electron diffusion.) +\begin{align} + J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \label{label:eq:diff_current_n} \\ + J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} \label{label:eq:diff_current_p} +\end{align} + + +\subsection{Einstein relation between mobility and diffusion coefficient} +\label{label:sss:einstein_rel_mob_diff} +\begin{equation} + \frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q^2} +\end{equation} + +\subsection{Total current} +\begin{alignat}{2} + J_{total} & =J_n+J_p & & \\ + J_n & =J_n^{drift}+J_n^{diff} & & =qn\mu_nE+qD_n\frac{\mathrm{d} n}{\mathrm{d} x}\label{label:eq:electron_current_density} \\ + J_p & =J_p^{drift}+J_p^{diff} & & =qp\mu_pE-qD_p\frac{\mathrm{d} p}{\mathrm{d} x} +\end{alignat} \ No newline at end of file diff --git a/03_pn_junction_basics.tex b/03_pn_junction_basics.tex new file mode 100644 index 0000000000000000000000000000000000000000..0a5d0a48631b12969c4616c860753fd0eb87b414 --- /dev/null +++ b/03_pn_junction_basics.tex @@ -0,0 +1,76 @@ +\section{PN junction basics} +\subsection{Uniformly doped semiconductor} +Assuming n type (i.e. lots of electrons, few holes) semiconductor with a uniform doping profile, +we have the following volume charge density. +\begin{align} + n_0 & = N_d \\ + \rho & = q\left(N_d-n_0\right)=0 \ \left[C/cm^{3}\right] +\end{align} + +\subsection{Non-uniformly doped semiconductor} +At thermal equilibrium, the total current must be 0. +Because we have non-uniform doping, +we need the drift current to balance the diffusion current. +(For both electrons and holes.) +\begin{equation} + J_n(x)=J_n^{drift}(x)+J_n^{diff}(x)=0 +\end{equation} +Which implies +\begin{equation} + n(x)\neq N_d(x) +\end{equation} +Which gives us the space charge density +\begin{equation} + \label{label:eq:electron_space_charge_density} + \rho(x)=q\left[N_d(x)-n(x)\right]\neq 0 +\end{equation} + +This results in a potential difference (quick electromag recap): +\begin{align} + \frac{\mathrm{d}E}{\mathrm{d}x} & = -\frac{\rho}{\varepsilon} \label{label:eq:def_electric_field_differential} \\ + E(x)-E(0) & =\frac{1}{\varepsilon}\int_{0}^{x}\rho(x')\,\mathrm{d}x' \label{label:eq:def_electric_field_integral} +\end{align} + +Since there is an electric field, there's a potential. +\begin{align} + \frac{\mathrm{d}\phi}{\mathrm{d}x} & = -E \\ + \phi(x)-\phi(0) & =-\int_{0}^{x}E(x')\,\mathrm{d}x' +\end{align} + +By combining eq \eqref{label:eq:electron_current_density} , +\eqref{label:eq:electron_space_charge_density}, +and \eqref{label:eq:def_electric_field_differential} we find +\begin{equation} + \frac{\mathrm{d}^2}{\mathrm{d}x^2}\ln{n(x)} = \frac{q^2}{\varepsilon kT}\left(n(x)-N_d(x)\right) +\end{equation} + +\subsection{Quasi-neutral approximation} +If the doping changes slowly with x: +\begin{equation} + n(x)\approx N_c(x) +\end{equation} + + +\subsection{Boltzman relation between $n$ and $\phi$} +We saw in \autoref{label:sss:einstein_rel_mob_diff} the relation between mobility and diffusion coefficients. +From this we find +\begin{align} + n & =n_{ref}e^{q(\phi-\phi_{ref})/kT} \\ + \phi_{ref} & =0 \\ + n_{ref} & =n_i +\end{align} +And by extension +\begin{align} + n & = n_i e^{q\phi/kT} \\ + p & =n_ie^{-q\phi/kT} +\end{align} + +Rearranging the above, we find an expression for the potential: +\begin{align} + \phi & =\frac{kT}{q}\ln\frac{n}{n_i} \label{label:eq:boltzman:phi_n} \\ + \phi & = -\frac{kT}{q}\ln\frac{p}{n_i} \label{label:eq:boltzman:phi_p} +\end{align} +For Si at room temperature this is an increase of 60 mV per decade in doping. +\begin{equation} + \phi\approx(60\,\mathrm{mV})\log_{10}\frac{n}{10^{10}} +\end{equation} diff --git a/04_pn_junction.tex b/04_pn_junction.tex new file mode 100644 index 0000000000000000000000000000000000000000..eee6d98fb52f78a4be20af672e39d4fbb80e776d --- /dev/null +++ b/04_pn_junction.tex @@ -0,0 +1,69 @@ +\section{PN junction} +\subsection{What are we even doing} +We stick together n and p doped regions, such that the doping effectively becomes a step function. +This causes majority carriers (electrons in n region, holes in p region) to diffuse the minority carrier side, +resulting in a new equilibrium (\autoref{label:fig:pn_carrier_profile_equilibrium}). +\begin{figure}[h] + \centering + \begin{subfigure}[b]{.45\textwidth} + \includegraphics[width=\textwidth]{imgs/pn_carrier_profile_equilibrium.png} + \caption{Resulting carrier profile in thermal equilibrium} + \label{label:fig:pn_carrier_profile_equilibrium} + \end{subfigure} + \hfill + \begin{subfigure}[b]{.45\textwidth} + \includegraphics[width=\textwidth]{imgs/pn_fermi_level_band_bending.png} + \caption{Resulting carrier profile in thermal equilibrium} + \label{label:fig:pn_fermi_level_band_bending} + \end{subfigure} +\end{figure} + +As can be seen in \autoref{label:fig:pn_fermi_level_band_bending}, +the energy levels for conduction and valence bands bend, whereas the fermi level remains constant. + + + +\subsection{Depletion approximation} +We assume p and n regions quasi-neutral, +and the intermediate space charge region to be completely depleted of carriers. +We further assume all transitions are expressed as step-functions. +This allows the following simplified equations: +\begin{align} + \rho(x) & = \begin{dcases} + 0 & x<-x_p \\ + -qN_a & -x_p<x<0 \\ + qN_d & 0<x<x_n \\ + 0 & x_n<x + \end{dcases} \\ + E(x) & =\begin{dcases} + 0 & x<-x_p \\ + -\frac{qN_a}{\varepsilon}(x+x_p) & - x_p<x<0 \\ + \frac{qN_d}{\varepsilon}(x-x_n) & 0<x<x_n \\ + 0 & x_n<x + \end{dcases} +\end{align} +Where $E$ is found using \eqref{label:eq:def_electric_field_integral}. + +\subsection{Electrostatic potential - (Width of the depletion zone)} +Because of overall charge neutrality +\begin{equation} + qN_ax_p = qN_cx_n +\end{equation} +and continuity of the potential at the junction interface +\begin{equation} + \phi_p+\frac{qN_a}{2\varepsilon}x_p^2 = \phi_n-\frac{qN_d}{2\varepsilon}x_n^2 +\end{equation} +we can find $x_n$ and $x_p$: +\begin{align} + x_n & = \sqrt{\frac{2\varepsilon\phi_BN_a}{qN_d(N_a+N_d)}} \\ + x_p & = \sqrt{\frac{2\varepsilon\phi_BN_d}{qN_a(N_a+N_d)}} +\end{align} +Where $\phi_B$ is the built-in potential, which is the potential over the junction. +Also, it is the less heavily doped region that defines the junction width. +It is also in the less heavily doped region that the depletion zone extends farther. + +\subsection{Contact potential} +Although there is a potential accross the diode, it cannot be measured because there are the metal semi-conductor junctions for both p and n regions. +\begin{equation} + \phi_B = \phi_mn+\phi_mp +\end{equation} \ No newline at end of file diff --git a/05_pn_junction_bias.tex b/05_pn_junction_bias.tex new file mode 100644 index 0000000000000000000000000000000000000000..bd2312c071d8181abc402967b799a1aace8f7a32 --- /dev/null +++ b/05_pn_junction_bias.tex @@ -0,0 +1,69 @@ +\section{PN junction bias} +\subsection{Model} + +We can see the junction as a series of resistors as follows. +(Junction $V_{pn}>0$ is a forward bias, QNR is a quasi-neutral region.) +\begin{center} + \begin{circuitikz} + \draw (0,0) to[R, l=$R_{mp}$] ++(2,0) + to [R, l=\textnormal{p-QNR}] ++(2,0) + to [R, l=\textnormal{SCR}] ++(2,0) + to [R, l=\textnormal{n-QNR}] ++(2,0) + to [R, l=$R_{mn}$] (10,0); + \draw (0,0) to [short] (0,2) + to [V, v=$V_{pn}$] (10,2) + to [short] (10,0); + \begin{scope}[opacity=.5] + \draw (1,-1) rectangle (9,1); + \draw (4,-1) -- (4,1); + \draw (6,-1) -- (6,1); + \draw[dotted] (5,-1) -- (5,1); + \end{scope} + \node at (2.5,-1.5) {p-QNR}; + \node at (5,-1.5) {SCR}; + \node at (7.5,-1.5) {n-QNR}; + \node at (4.5,-0.5) {$-$}; + \node at (5.5,-0.5) {$+$}; + \end{circuitikz} +\end{center} + +Importantly, the SCR resistance ist the most important one and others can be neglected. + +\subsection{Space charge region (SCR)} +In essence, applying a forward/reverse bias effects the depletion region: +\begin{align} + \phi_B & \rightarrow \phi_B-V_{pn} \\ + x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\ + x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\ + x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_dN_a}{q(N_a+N_d)}} \\ + \left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V)(N_aN_d)}{\varepsilon(N_a+N_d)}} +\end{align} + +In the case of a strongly doped $p^+n$ junction, +we can approximate the SCR since it exists only in the lesser doped region. +\begin{equation} + x_n(V)=x_{n0}\sqrt{a-\frac{V}{\phi_B}} +\end{equation} + + +\subsection{PN small-signal capacitance} +In reverse bias, the PN junction acts as a capacitor. +\begin{equation} + C_{j0} = \frac{\varepsilon}{W_{dep}} +\end{equation} + +So as a function of the bias voltage, we get +\begin{equation} + \begin{split} + C_j(V) &= \frac{\varepsilon}{x_c(V)}\\ + &=\sqrt{\frac{q\varepsilon N_aN_d}{2q(\phi_B-V)(N_a+N_d)}}\\ + &=\frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} + \end{split} +\end{equation} + +In a strongly asymmetric junction $p^+n$ +\begin{equation} + \frac{1}{C_j^2} \approx \frac{2(\phi_B-V)}{q\varepsilon N_d} +\end{equation} + + diff --git a/06_pn_junction_diode.tex b/06_pn_junction_diode.tex new file mode 100644 index 0000000000000000000000000000000000000000..965334f656e5740d07dfb31a965a7410439b8525 --- /dev/null +++ b/06_pn_junction_diode.tex @@ -0,0 +1,81 @@ +\section{PN junction diode} +\subsection{Carrier concentration under bias} +Under forward bias, the net current is no longer zero. +\begin{equation} + \left| J_{drift} \right|<\left| J_{diff} \right| +\end{equation} +Which causes injection of minority carriers into the QNR regions giving rise to `high' currents. + + +\subsection{Diode current} +To calculate the current, we \begin{enumerate} + \item Calculate concentration of minority carriers at the edges of SCR + \item Calculate minority carrier diffusion current in each QNR for $I_n$ and $I_p$ + \item Sum the currents $I_n$ and $I_p$ +\end{enumerate} + +\subsubsection{Minority carrier conditions} +We use the quasi-equilibrium equation to misuse equations for equilibrium. +\begin{align} + \frac{n(x_1)}{n(x_2)} & \approx \exp{\frac{q(\phi(x_1)-\phi(x_2))}{kT}} \\ + \frac{p(x_1)}{p(x_2)} & \approx \exp{\frac{-q(\phi(x_1)-\phi(x_2))}{kT}} +\end{align} + +So by using $x_n$ and $x_p$ in the above equation we have the following: +\begin{align} + \frac{n(x_n)}{n(-x_p)} & \approx \exp{\frac{q(\phi_B-V)}{kT}} \\ + \frac{p(x_n)}{p(-x_p)} & \approx \exp{\frac{-q(\phi_B-V)}{kT}} \\ + p(-x_p) & =N_a \\ + n(x_n) & =N_d +\end{align} + +And so we find what we needed: +\begin{align} + n(-x_p) & \approx N_d\exp\frac{q(V-\phi_B)}{kT} \\ + p(x_n) & \approx N_a\exp\frac{q(V-\phi_B)}{kT} +\end{align} + + +Then by using the Boltzman relations \eqref{label:eq:boltzman:phi_n} and \eqref{label:eq:boltzman:phi_p} we find +\begin{align} + \phi_B & = \frac{kT}{q}\ln\frac{N_dN_a}{n_i^2} \\ + \Rightarrow n(-x_p) & \approx \frac{n_i^2}{N_a}\exp\frac{qV}{kT} \\ + \Rightarrow p(x_n) & \approx \frac{n_i^2}{N_d}\exp\frac{qV}{kT} +\end{align} + +\subsubsection{Diffusion current in QNR} +We assume a linear gradient between $n(-W_p)$ and $n(-x_p)$ to easily use \eqref{label:eq:diff_current_n} to find +\begin{equation} + \begin{split} + J_n^{diff} &= qD_n\frac{n_p(-x_p)-n_p(-W_p)}{W_p-x_p}\\ + &= qD_n \frac{\left(\frac{n_i^2}{N_a}\exp{\frac{qV}{kT}}\right)-\frac{n_i^2}{N_a}}{W_p-x_p}\\ + &= q\frac{n_i^2}{N_a}\frac{D_n}{W_p-x_p}\left(\exp{\frac{qV}{kT}}-1\right) + \end{split} +\end{equation} + +\subsubsection{Total diode current} +\begin{equation} + \begin{split} + J & = J_n+J_p \\ + & =q n_i^2 \left( \frac{1}{N_A}\frac{D_n}{W_p-x_p} + \frac{1}{N_D}\frac{D_p}{W_n-x_n} \right)\left(\exp + \frac{qV}{kT} - 1\right) + \end{split} +\end{equation} +Or so simplify +\begin{align} + I & =I_0\left(\exp\frac{qV}{kT}-1\right) \\ + I_0 & = A q n_i^2 \left( \frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right) +\end{align} + +Note that sometimes a non-ideality factor $n$ is used: +\begin{equation} + I = I_0\left(\exp\frac{qV}{nkT}-1\right) +\end{equation} + + +\subsection{PN junction reverse bias} +When applying a reverse bias, the depletion region gets wider and the electric field increases. +There comes a point when the diode breaks down and destroys itself. +\begin{equation} + W_{dep} = \sqrt{\frac{2\varepsilon}{q}\left(\frac{1}{N_A}+\frac{1}{N_D}\right)\left(V_0+V_R\right)} +\end{equation} \ No newline at end of file diff --git a/07_diode_applications.tex b/07_diode_applications.tex new file mode 100644 index 0000000000000000000000000000000000000000..ce3bf4ba757a7320dbd960359c108e8d8199c2fc --- /dev/null +++ b/07_diode_applications.tex @@ -0,0 +1,129 @@ +\section{Diode applications} +\subsection{Small signal} +If $i\ll I$ and $v\ll V$, then we can use the small signal approximation. +\begin{equation} + \begin{split} + I+i &= I_0\left(\exp\frac{q(V+v)}{kT}-1\right) \\ + &=I_0\left(\exp\frac{q(V)}{kT}\exp\frac{q(v)}{kT}-1\right)\\ + &\approx I_0\left(\exp\frac{q(V)}{kT}\left(1+\frac{qv}{kT}\right)-1\right)\\ + &= I_0\left( \exp\frac{qV}{kT} - 1 \right) + I_0 \left( \exp\left(\frac{qV}{kT}\right)\frac{qv}{kT} \right) + \end{split} +\end{equation} + +Which gives us the smallsignal current +\begin{align} + i & = \frac{q\left(I+I_0\right)}{kT}v = g_d v \\ + g_d & = \frac{q\left(I+I_0\right)}{kT} +\end{align} + + +\subsubsection{Capacitances of small-signal model} +\begin{figure}[h] + \centering + \caption*{Small signal model for diode} + \begin{circuitikz} + \draw (-3,2) to [Do] (-3,0); + \draw[->] (-2,1) -- (-1,1); + \draw (0,0) to [R,l=$g_d$] (0,2); + \draw (2,0) to [C,l=$C_j$] (2,2); + \draw (4,0) to [C,l=$C_d$] (4,2); + \draw (0,0) to [short] (4,0); + \draw (0,2) to [short] (4,2); + \draw (2,2) to [short] (2,2.5); + \draw (2,-0.5) to [short] (2,0); + \end{circuitikz} +\end{figure} +\begin{align} + C_j & = \frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} \\ + C_d & = \frac{q}{kT}\tau_T I \\ + \tau_T & \equiv \text{equivalent transit time of carriers} +\end{align} +Where $C_j$ dominates in reverse bias and small forward bias, +and $C_d$ dominates in large forward bias ($V>\frac{\phi_B}{2}$). + + +\subsection{Large signal} +\subsubsection{Rectifier} +This is pretty much trivial. +\begin{center} + \begin{circuitikz} + \draw (0,-2) to [sV,l=$V_{in}$] ++(0,4) + to [short] ++(2,0) + to [Do,v=$V_D$] ++(0,-2) + to [R,l=$R_L$,v=$V_o$] ++(2,0) + to [Do] ++(0,-2) + to [short] (0,-2); + draw (4,0) to [Do] ++(0,2) + to [short] ++(-2,0); + \draw (2,-2) to [Do] ++(0,2); + \draw (4,0) to [Do] ++(0,2) + to [short] ++(-2,0); + \end{circuitikz} +\end{center} +\begin{equation} + V_o = V_{in}-2V_D +\end{equation} + +\subsubsection{Voltage regulator} +\begin{center} + \begin{circuitikz} + \draw (0,0) to [V,v<=$10\pm1\ V$] (0,8) + to [short] ++(2,0) + to [R,l=$R_1$] ++(0,-2) + to [short] ++(0,-2) + to [Do] ++(0,-1) + to [Do] ++(0,-1) + to [Do] ++(0,-1) + to [short] ++(0,-1) + to [short] (0,0); + \draw (2,5) to [nos] ++(2,0) + to [R,l=$R_2$] ++(0,-5) + to [short] (0,0); + \end{circuitikz} +\end{center} + +How to go about it: +\begin{align} + I & = \frac{V_{in}-\sum V_D}{R_1} \\ + r_d & =\left[\frac{\mathrm{d}I_D}{\mathrm{d}V_d}\right]^{-1} =\frac{nV_t}{I_0} \\ + r & = \sum r_d \\ + \Delta V_o & = \Delta V_{in}\frac{r}{r+R_2} \\[1em] + n & \equiv\text{non-ideality factor} \\ + V_t & = \frac{kT}{q} +\end{align} + +Once the load is connected and draws current, we have a further small variation: +\begin{align} + I_{load} & = \frac{\sum V_D}{R_2} \\ + \Delta V_o & = I_{load}r +\end{align} + +\subsection{Special diode types} +\subsubsection{Zener} +Is heavily doped making the depletion layer extremely thing, and thus allowing for QM tunneling in reverse biased diode. +(In this case known as band-to-band tunneling.) + +\begin{figure}[h] + \centering + \caption[short]{Band-bending zener diode} + \includegraphics[width=.75\textwidth]{imgs/zener_diode_band_bending.png} +\end{figure} +The voltage at which the diode starts conducting is called the zener voltage $V_Z$. +The diode then has a low resistance $R_Z$. + +\subsubsection{Esaki} +Heavily doped with the tunneling effect in forward bias. +\begin{figure}[h] + \centering + caption{Esaki tunnel diode} + \includegraphics[width=.75\textwidth]{imgs/esaki_tunnel_diode.png} +\end{figure} + +\subsubsection{Schottky} +A schottky diode has $I_0$ $10^3$ to $10^8$ times bigger than a PN diode. +Preferred in low voltage high current applications. + +\subsubsection{Photodiodes} +\begin{equation} + I = I_0\left( e^{\frac{qV}{kT}} - 1\right)-I_{photo} +\end{equation} \ No newline at end of file diff --git a/08_bjt.tex b/08_bjt.tex new file mode 100644 index 0000000000000000000000000000000000000000..bb10c0b0bcd1b60e310caf34449e77e76de92563 --- /dev/null +++ b/08_bjt.tex @@ -0,0 +1,116 @@ +\section{Bipolar junction transistor (BJT)} +\begin{figure}[h] + \centering + \caption{BJT} + \includegraphics[width=.75\textwidth]{imgs/bjt_terminals_and_functioning.png} +\end{figure} + +But what's going on? +If $V_{BE}>0$ injection of electrons from E to B, of holes from B to E. +If $V_{BC}<0$ extraction of electrons from B to C, of holes from C to B. + + +\subsection{BJT characteristics} +\begin{align} + I_E & = -I_C-I_B \\ + \begin{split} + \beta &= \frac{I_C}{I_B} + =\frac{n_{pB_0}\frac{D_n}{W_B}}{p_{nE_0}\frac{D_p}{W_E}}\\ + &= \frac{N_{dE} D_n W_E}{N_{aB} D_p W_B} + \end{split} +\end{align} + +Collector current, +focus on electron diffusion in base: +\begin{align} + n_{pB}(0) & =n_{pB_0}e^{\frac{qV_{BE}}{kT}} \\ + n_{pB}(x) & =n_{pB}(0)(1-\frac{x}{W_B}) \\[1em] + \begin{split} + J_{nB} &= qD_n\frac{\mathrm{d} n_{pB}}{\mathrm{d}x}\\ + &= -qD_n\frac{n_{pB}(0)}{W_B} + \end{split} \\ + \begin{split} + I_C &=-J_{nB}A_E\\ + &=qA_E\frac{E_n}{W_B}n_{pB_0}e^{\frac{qV_{BE}}{kT}} + \end{split} \\ + I_C & = I_Se^{\frac{qV_{BE}}{kT}} +\end{align} +Base current, +focus on hole injection and recombination in emitter: +\begin{align} + p_{nE}(-x_{BE}) & =p_{nE_0}e^{-\frac{qV_{BE}}{kT}} \\ + p_{nE}(-W_E-x_{BE}) & =p_{nE_0} \\ + p_{nE}(x) & =\left[ p_{nE}(-x_{BE}-p_{nE_0}) \right]\left( 1+\frac{x+x_{BE}}{W_E} \right)+P_{nE_0} & \leftarrow \text{Hole Profile} \\[1em] + \begin{split} + J_{pE}&=-qD_p\frac{\mathrm{d}p_{nE}}{\mathrm{d}x}\\ + &=-qD_p\frac{p_{nE(-x_{BE})-p_{nE_0}}}{W_E} + \end{split} \\ + \begin{split} + I_B&=-J_{pE}A_E\\ + &=qA_E\frac{D_p}{W_E}p_{nE_0}\left( e^{\frac{qV_{VE}}{kT}} -1 \right) + \end{split} \\ + I_B & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\ + I_B\approx\frac{I_C}{\beta} +\end{align} + +\subsubsection{`Good' transistor} +We want collector and emitter current to be identical and so we define $\alpha$ as measurement of how close we are: +\begin{align} + I_C & =-\alpha I_E \\ + & =\alpha\left(I_B+I_C\right) \\ + & =\frac{\alpha}{1-\alpha}I_B \\ + & =\beta I_B \\ + \beta & =\frac{\alpha}{1-\alpha} +\end{align} + +\subsection{Summary forward active} +\begin{align} + I_C & = I_Se^{\frac{qV_{BE}}{kT}} \\ + I_B & = \frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\ + I_E & = -I_C-I_B +\end{align} + +For reverse, it is the same but $\beta_R\approx [0.1,5]\ll\beta$. + +\subsection{Summary cut-off} +\begin{alignat}{2} + I_{B1} & = -\frac{I_S}{\beta} & & =-I_E \\ + I_{B2} & =-\frac{I_S}{\beta_R} & & =-I_C +\end{alignat} + +\subsection{Summary saturation} +\begin{align} + I_C & =I_S\left(e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}}\right)-\frac{I_S}{\beta_R}\left( e^\frac{qV_{BC}}{kT} - 1 \right) \\ + I_B & =\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)+\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right) \\ + I_E & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}} - 1\right) - I_S\left( e^{\frac{qV_{BE}}{kT}} -e^{\frac{qV_{BC}}{kT}} \right) +\end{align} + +\subsection{Ebers-Moll model} +\begin{center} + \begin{circuitikz} + \draw (0,0) node[left] {B} to [short,*-] ++(1,0) + to [Do,l=$\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right)$] ++(0,2) + to [short] ++(2,0) + to [I,l=$I_S\left( e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}} \right)$,i=$$] ++(0,-4) + to [short] ++(-1,0); + \draw (1,0) to [Do,l_=$\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)$] ++(0,-2) + to [short] ++(1,0) + to [short,-*] ++(0,-1) node [below] {E}; + \draw (2,2) to [short,-*] ++(0,1) node[above] {C}; + \end{circuitikz} +\end{center} + +\subsection{Early effect} +With increasing $V_{CE}$, the depletion region inceases. +To not have to deal with that, we introduce a correction factor +\begin{equation} + I_C = I_S e^{\frac{V_{BE}}{V_{th}}}\left(1+\frac{V_{CE}}{V_A}\right) +\end{equation} + +\subsection{Transfer characteristics} +We evaluate the transistor at its operating point ($OP$ or $Q=(V_{BE},V_{CE})$) to find the transconductance $g_m$. +\begin{equation} + \label{label:eq:bjt_transconductance} + g_m = \left. \frac{\partial i_C}{\partial V_{BE}} \right|_{OP} = \frac{qI_C}{kT} +\end{equation} + diff --git a/09_bjt_small_signal.tex b/09_bjt_small_signal.tex new file mode 100644 index 0000000000000000000000000000000000000000..4b98eaf2b9cabc3d254e5c5176a7120b17fd25c6 --- /dev/null +++ b/09_bjt_small_signal.tex @@ -0,0 +1,34 @@ +\section{BJT small signal} +\begin{center} + \begin{circuitikz} + \draw (0,2) node[left]{B} to [short,i=$i_b$ , *-] ++(1,0) + to [R,l=$r_{be}$,v=$v_{be}$] ++(0,-2) + to [short] ++(2,0) + to [cI,l_=$g_mv_{be}$,i<=$$] ++(0,2) + to [short] ++(2,0) + to [R,l=$r_{o}$] ++(0,-2) + to [short] ++(-2,0) + to [short,i=$i_e$,-*] ++(0,-1)node[below]{E} + ++(2,3) + to [short,i<=$i_c$,-*] ++(1,0) node[right]{C}; + % to [open,v_=$v_{ce}$] ++(0,-2); + \end{circuitikz} +\end{center} + +\subsection{Transistor amplifiers, 2 step analysis} + + +\begin{enumerate} + \item DC analysis + \begin{enumerate} + \item Get DC equivalent circuit (rm C, cc L) + \item Find OP using large signal model of transistor + \end{enumerate} + \item AC analysis + \begin{enumerate} + \item Get AC equivalent circuit (cc C, rm L) + \item Replace transistor with small signal model + \item Use small-signal AC model to find characteristics + \item Combine AC and DC analysis + \end{enumerate} +\end{enumerate} diff --git a/format.tex b/format.tex index 4c06032277be5fac6d8de048ee3f5654d6591e49..45caad0fa7ef1784775089b1b5bb8bfc00d3941a 100644 --- a/format.tex +++ b/format.tex @@ -27,6 +27,11 @@ \usepackage{subcaption} \usepackage{graphicx, xcolor} + + +\usepackage[european,straightvoltages]{circuitikz} +\usepackage{tikz} + \usepackage{url} \usepackage[pdfusetitle]{hyperref} \hypersetup{ @@ -50,3 +55,7 @@ \rhead{\today} \lhead{} \cfoot{\thepage} + + + +\numberwithin{equation}{subsection} diff --git a/imgs/band_gap_electorn_holes.png b/imgs/band_gap_electorn_holes.png new file mode 100644 index 0000000000000000000000000000000000000000..f5625c41459fbb766a4302e27c10750db73a53dd Binary files /dev/null and b/imgs/band_gap_electorn_holes.png differ diff --git a/imgs/bjt_terminals_and_functioning.png b/imgs/bjt_terminals_and_functioning.png new file mode 100644 index 0000000000000000000000000000000000000000..5428b55558a8cd8a2c9e8a5bd0f0e6649ac7618c Binary files /dev/null and b/imgs/bjt_terminals_and_functioning.png differ diff --git a/imgs/esaki_tunnel_diode.png b/imgs/esaki_tunnel_diode.png new file mode 100644 index 0000000000000000000000000000000000000000..1d175462e60b18976dd6491a766c7d2fab30581a Binary files /dev/null and b/imgs/esaki_tunnel_diode.png differ diff --git a/imgs/pn_carrier_profile_equilibrium.png b/imgs/pn_carrier_profile_equilibrium.png new file mode 100644 index 0000000000000000000000000000000000000000..37ef88669ee31d961b4a7aa0da5b01689036801d Binary files /dev/null and b/imgs/pn_carrier_profile_equilibrium.png differ diff --git a/imgs/pn_fermi_level_band_bending.png b/imgs/pn_fermi_level_band_bending.png new file mode 100644 index 0000000000000000000000000000000000000000..1d4fccda220aaf1ff4bb72fd3ef18c9d86d31e38 Binary files /dev/null and b/imgs/pn_fermi_level_band_bending.png differ diff --git a/imgs/zener_diode_band_bending.png b/imgs/zener_diode_band_bending.png new file mode 100644 index 0000000000000000000000000000000000000000..cbcdca88046380afd64f3a6f4e734728b123b77a Binary files /dev/null and b/imgs/zener_diode_band_bending.png differ diff --git a/semiconductor_summary.tex b/semiconductor_summary.tex index 79e44e0040262edbf3bdf9ed2eb0e8a8d6012388..e2751efb1570fa54cbf9ab0a9b3c066550565a02 100644 --- a/semiconductor_summary.tex +++ b/semiconductor_summary.tex @@ -2,7 +2,7 @@ -\title{Micro and nanoelectronic devices \\ PHYS-201(d)} +\title{Micro and nanoelectronic devices \\ EE-333} \author{Simon Thür} \date{ \today \\ \small{ Version 0.1 } } @@ -13,24 +13,38 @@ \thispagestyle{empty} This summary for - \href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{Micro and nanoelectronic devices} - © 2021 by + \href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{micro and nanoelectronic devices} + © 2023 by \href{https://gitlab.epfl.ch/sthuer}{Simon Thür} is licensed under \href{http://creativecommons.org/licenses/by/4.0/}{CC BY 4.0}. To view a copy of this license, visit \url{http://creativecommons.org/licenses/by/4.0/} - + To see the source code, visit \href{https://gitlab.epfl.ch/sthuer/semiconductors_summary}{https://gitlab.epfl.ch/sthuer/semiconductors\_summary} \section*{Introductory remarks} This is a summary of Prof Ionescu's course on semiconductor devices. + It follows the course structure but does not retain the same enumeration. + Since the reference material is in english, this summary is also in english. + + The aim of this summary is to provide a denser overview of the course material. + Specifically, it is intended to be used as a reference for the exam, + which is why it has only few remarks and focuses mainly on equations with little regard for how they were derived. + \end{titlepage} \tableofcontents -\include{01_fundamentals} - +\include{01_fundamentals.tex} +\include{02_carrier_transport.tex} +\include{03_pn_junction_basics.tex} +\include{04_pn_junction.tex} +\include{05_pn_junction_bias.tex} +\include{06_pn_junction_diode.tex} +\include{07_diode_applications.tex} +\include{08_bjt.tex} +\include{09_bjt_small_signal.tex} \end{document}