Skip to content
Snippets Groups Projects
Verified Commit c89c407a authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

nicer circuits

parent a408273c
No related branches found
No related tags found
No related merge requests found
......@@ -23,16 +23,16 @@ If $V_{BC}<0$ extraction of electrons from B to C, of holes from C to B.
Collector current,
focus on electron diffusion in base:
\begin{align}
n_{pB}(0) & =n_{pB_0}e^{\frac{qV_{BE}}{kT}} \\
n_{pB}(x) & =n_{pB}(0)(1-\frac{x}{W_B}) \\[1em]
n_{pB}(0) & =n_{pB_0}e^{\frac{qV_{BE}}{kT}} \\
n_{pB}(x) & =n_{pB}(0)(1-\frac{x}{W_B}) \\[1em]
\begin{split}
J_{nB} &= qD_n\frac{\mathrm{d} n_{pB}}{\mathrm{d}x}\\
&= -qD_n\frac{n_{pB}(0)}{W_B}
\end{split} \\
\end{split} \\
\begin{split}
I_C &=-J_{nB}A_E\\
&=qA_E\frac{E_n}{W_B}n_{pB_0}e^{\frac{qV_{BE}}{kT}}
\end{split} \\
\end{split} \\
I_C & = I_Se^{\frac{qV_{BE}}{kT}}
\end{align}
Base current,
......@@ -44,11 +44,11 @@ focus on hole injection and recombination in emitter:
\begin{split}
J_{pE}&=-qD_p\frac{\mathrm{d}p_{nE}}{\mathrm{d}x}\\
&=-qD_p\frac{p_{nE(-x_{BE})-p_{nE_0}}}{W_E}
\end{split} \\
\end{split} \\
\begin{split}
I_B&=-J_{pE}A_E\\
&=qA_E\frac{D_p}{W_E}p_{nE_0}\left( e^{\frac{qV_{VE}}{kT}} -1 \right)
\end{split} \\
\end{split} \\
I_B & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\
I_B\approx\frac{I_C}{\beta}
\end{align}
......@@ -88,15 +88,15 @@ For reverse, it is the same but $\beta_R\approx [0.1,5]\ll\beta$.
\subsection{Ebers-Moll model}
\begin{center}
\begin{circuitikz}
\draw (0,0) node[left] {B} to [short,*-] ++(1,0)
\draw (0,0) node[left] {B} to [short,o-*] ++(1,0)
to [Do,l=$\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right)$] ++(0,2)
to [short] ++(2,0)
to [I,l=$I_S\left( e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}} \right)$,i=$$] ++(0,-4)
to [short] ++(-1,0);
\draw (1,0) to [Do,l_=$\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)$] ++(0,-2)
to [short] ++(1,0)
to [short,-*] ++(0,-1) node [below] {E};
\draw (2,2) to [short,-*] ++(0,1) node[above] {C};
to [short,*-o] ++(0,-1) node [below] {E};
\draw (2,2) to [short,*-o] ++(0,1) node[above] {C};
\end{circuitikz}
\end{center}
......
......@@ -8,9 +8,9 @@
to [short] ++(2,0)
to [R,l=$r_{o}$] ++(0,-2)
to [short] ++(-2,0)
to [short,i=$i_e$,-o] ++(0,-1)node[below]{E}
to [short,i=$i_e$,*-o] ++(0,-1)node[below]{E}
++(2,3)
to [short,i<=$i_c$,-o] ++(1,0) node[right]{C};
to [short,i<=$i_c$,*-o] ++(1,0) node[right]{C};
% to [open,v_=$v_{ce}$] ++(0,-2);
\end{circuitikz}
\begin{circuitikz}
......@@ -21,7 +21,7 @@
to [short,-o,i=$i_c$]++(1,0) node[right]{C}
++(-1,0) to[R,l_=$r_{o}$] ++(0,2)
to [short] ++(-4,0)
to [R,l=$r{be}$,v=$v_{be}$] ++(0,-2)
to [R,l=$r_{be}$,v=$v_{be}$] ++(0,-2)
to [short,i=$i_b$,-o] ++(-1,0)node[left]{B}
;
\end{circuitikz}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment