Skip to content
Snippets Groups Projects
Verified Commit 9482e484 authored by Simon Josef Thür's avatar Simon Josef Thür
Browse files

add pn bias and varicap

parent 8c10f7a8
No related branches found
No related tags found
No related merge requests found
\section{PN junction bias}
\subsection{Model}
We can see the junction as a series of resistors as follows.
(Junction $V_{pn}>0$ is a forward bias.)
\begin{center}
\begin{circuitikz}
\draw (0,0) to[R, l=$R_{mp}$] ++(2,0)
to [R, l=\textnormal{p-QNR}] ++(2,0)
to [R, l=\textnormal{SCR}] ++(2,0)
to [R, l=\textnormal{n-QNR}] ++(2,0)
to [R, l=$R_{mn}$] (10,0);
\draw (0,0) to [short] (0,2)
to [V, v=$V_{pn}$] (10,2)
to [short] (10,0);
\begin{scope}[opacity=.5]
\draw (1,-1) rectangle (9,1);
\draw (4,-1) -- (4,1);
\draw (6,-1) -- (6,1);
\draw[dotted] (5,-1) -- (5,1);
\end{scope}
\node at (2.5,-1.5) {p-QNR};
\node at (5,-1.5) {SCR};
\node at (7.5,-1.5) {n-QNR};
\node at (4.5,-0.5) {$-$};
\node at (5.5,-0.5) {$+$};
\end{circuitikz}
\end{center}
Importantly, the SCR resistance ist the most important one and others can be neglected.
\subsection{Space charge region (SCR)}
In essence, applying a forward/reverse bias effects the depletion region:
\begin{align}
\phi_B & \rightarrow \phi_B-V_{pn} \\
x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\
x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\
x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_dN_a}{q(N_a+N_d)}} \\
\left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V)(N_aN_d)}{\varepsilon(N_a+N_d)}}
\end{align}
In the case of a strongly doped $p^+n$ junction,
we can approximate the SCR since it exists only in the lesser doped region.
\begin{equation}
x_n(V)=x_{n0}\sqrt{a-\frac{V}{\phi_B}}
\end{equation}
\subsection{PN small-signal capacitance}
In reverse bias, the PN junction acts as a capacitor.
\begin{equation}
C_{j0} = \frac{\varepsilon}{W_{dep}}
\end{equation}
So as a function of the bias voltage, we get
\begin{equation}
\begin{split}
C_j(V) &= \frac{\varepsilon}{x_c(V)}\\
&=\sqrt{\frac{q\varepsilon N_aN_d}{2q(\phi_B-V)(N_a+N_d)}}\\
&=\frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}}
\end{split}
\end{equation}
In a strongly asymmetric junction $p^+n$
\begin{equation}
\frac{1}{C_j^2} \approx \frac{2(\phi_B-V)}{q\varepsilon N_d}
\end{equation}
...@@ -27,6 +27,11 @@ ...@@ -27,6 +27,11 @@
\usepackage{subcaption} \usepackage{subcaption}
\usepackage{graphicx, xcolor} \usepackage{graphicx, xcolor}
\usepackage[european]{circuitikz}
\usepackage{tikz}
\usepackage{url} \usepackage{url}
\usepackage[pdfusetitle]{hyperref} \usepackage[pdfusetitle]{hyperref}
\hypersetup{ \hypersetup{
......
...@@ -42,4 +42,5 @@ ...@@ -42,4 +42,5 @@
\include{02_carrier_transport} \include{02_carrier_transport}
\include{03_pn_junction_basics} \include{03_pn_junction_basics}
\include{04_pn_junction} \include{04_pn_junction}
\include{05_pn_junction_bias.tex}
\end{document} \end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment