Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
J
Jeffrey_Wigger_Master_Project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SaCS
Semester-Projects
spring22
Jeffrey_Wigger_Master_Project
Commits
c1c07aff
Commit
c1c07aff
authored
2 years ago
by
Jeffrey Wigger
Browse files
Options
Downloads
Patches
Plain Diff
updated plotting function.
parent
cdc057cf
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
eval/plot_std.py
+52
-42
52 additions, 42 deletions
eval/plot_std.py
with
52 additions
and
42 deletions
eval/plot_std.py
+
52
−
42
View file @
c1c07aff
...
...
@@ -5,8 +5,14 @@ import sys
import
numpy
as
np
import
pandas
as
pd
import
matplotlib
from
matplotlib
import
pyplot
as
plt
font
=
{
'
family
'
:
'
normal
'
,
'
size
'
:
16
}
matplotlib
.
rc
(
'
font
'
,
**
font
)
def
plot
(
x_axis
,
means
,
stdevs
,
pos
,
nb_plots
,
title
,
label
,
loc
,
xlabel
):
cmap
=
plt
.
get_cmap
(
"
gist_rainbow
"
)
...
...
@@ -24,16 +30,18 @@ def plot(x_axis, means, stdevs, pos, nb_plots, title, label, loc, xlabel):
def
plot_band
(
x_axis
,
means
,
stdevs
,
pos
,
nb_plots
,
title
,
label
,
loc
,
xlabel
,
ax
):
cmap
=
plt
.
get_cmap
(
"
gist_rainbow
"
)
ax
.
title
(
title
)
ax
.
xlabel
(
xlabel
)
print
(
type
(
ax
))
ax
.
set_title
(
title
)
ax
.
set_xlabel
(
xlabel
)
y_axis
=
list
(
means
)
print
(
"
label:
"
,
label
)
print
(
"
color:
"
,
cmap
(
1
/
nb_plots
*
pos
))
ax
.
fill_between
(
list
(
x_axis
),
list
(
means
-
stdevs
),
list
(
means
+
stdevs
),
alpha
=
0.2
)
ax
.
plot
(
list
(
x_axis
),
y_axis
,
label
=
label
,
color
=
cmap
(
1
/
nb_plots
*
pos
)
)
ax
.
legend
(
loc
=
loc
)
ax
.
fill_between
(
list
(
x_axis
),
list
(
means
-
stdevs
),
list
(
means
+
stdevs
),
color
=
cmap
(
1
/
nb_plots
*
pos
),
alpha
=
0.2
)
if
loc
is
not
None
:
ax
.
legend
(
loc
=
loc
)
def
plot_results
(
path
,
epochs
,
global_epochs
=
"
True
"
):
...
...
@@ -61,6 +69,7 @@ def plot_results(path, epochs, global_epochs="True"):
x_label
=
"
global epochs
"
#plt.figure(1)
fig
,
ax
=
plt
.
subplots
(
1
,
3
,
figsize
=
(
18
,
6
))
plt
.
tight_layout
(
pad
=
2
,
w_pad
=
2
,
h_pad
=
2
)
#plt.subplot(131, figsize=(5.0, 3.0))
for
i
,
f
in
enumerate
(
train_loss
):
filepath
=
os
.
path
.
join
(
path
,
f
)
...
...
@@ -68,7 +77,7 @@ def plot_results(path, epochs, global_epochs="True"):
results_csv
=
pd
.
read_csv
(
inf
)
# Plot Training loss
#plt.figure(1)
norm_name
=
f
[
len
(
"
train_loss
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)
]
norm_name
=
f
[
len
(
"
train_loss
"
)
+
1
:
-
4
].
split
(
"
:
"
)[
0
]
#
-len(":2022-03-24T17:54.csv")
if
global_epochs
:
rounds
=
results_csv
[
"
rounds
"
].
iloc
[
0
]
...
...
@@ -94,7 +103,7 @@ def plot_results(path, epochs, global_epochs="True"):
mean_of_means
.
append
(
vals
[
0
])
mean_of_std
.
append
(
vals
[
1
])
mean_of_means
=
np
.
average
(
mean_of_means
,
axis
=
0
)
mean_of_std
=
np
.
average
(
mean_of_std
,
axis
=
0
)
mean_of_std
=
np
.
sqrt
(
np
.
sum
(
np
.
array
(
mean_of_std
)
**
2
,
axis
=
0
)
/
len
(
mean_of_std
)
)
losses_metrics
[
"
avg
"
].
append
(
mean_of_means
)
losses_metrics
[
"
std
"
].
append
(
mean_of_std
)
losses_metrics
[
"
name
"
].
append
(
k
)
...
...
@@ -106,19 +115,19 @@ def plot_results(path, epochs, global_epochs="True"):
len
(
losses
),
"
Training Loss
"
,
k
,
"
upper right
"
,
None
,
#
"upper right",
x_label
,
ax
[
0
]
)
tlosses
=
{}
tlosses_metrics
=
{
"
avg
"
:
[],
"
std
"
:
[],
"
name
"
:
[]}
x_label
=
"
global epochs
"
plt
.
subplot
(
132
,
figsize
=
(
5.0
,
3.0
))
#
plt.subplot(132, figsize=(5.0, 3.0))
for
i
,
f
in
enumerate
(
test_loss
):
filepath
=
os
.
path
.
join
(
path
,
f
)
with
open
(
filepath
,
"
r
"
)
as
inf
:
results_csv
=
pd
.
read_csv
(
inf
)
norm_name
=
f
[
len
(
"
test_loss
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)
]
norm_name
=
f
[
len
(
"
test_loss
"
)
+
1
:
-
4
].
split
(
"
:
"
)[
0
]
#
-len(":2022-03-24T17:54.csv")
if
global_epochs
:
rounds
=
results_csv
[
"
rounds
"
].
iloc
[
0
]
print
(
"
Rounds:
"
,
rounds
)
...
...
@@ -145,7 +154,8 @@ def plot_results(path, epochs, global_epochs="True"):
mean_of_means
.
append
(
vals
[
0
])
mean_of_std
.
append
(
vals
[
1
])
mean_of_means
=
np
.
average
(
mean_of_means
,
axis
=
0
)
mean_of_std
=
np
.
average
(
mean_of_std
,
axis
=
0
)
mean_of_std
=
np
.
sqrt
(
np
.
sum
(
np
.
array
(
mean_of_std
)
**
2
,
axis
=
0
)
/
len
(
mean_of_std
))
# np.average(mean_of_std, axis=0)
tlosses_metrics
[
"
avg
"
].
append
(
mean_of_means
)
tlosses_metrics
[
"
std
"
].
append
(
mean_of_std
)
tlosses_metrics
[
"
name
"
].
append
(
k
)
...
...
@@ -157,21 +167,21 @@ def plot_results(path, epochs, global_epochs="True"):
len
(
tlosses
),
"
Testing Loss
"
,
k
,
"
upper right
"
,
None
,
#
"upper right",
x_label
,
ax
[
1
]
)
taccs
=
{}
tacc_metrics
=
{
"
avg
"
:
[],
"
std
"
:
[],
"
name
"
:
[]}
plt
.
subplot
(
133
,
figsize
=
(
5.0
,
3.0
))
#
plt.subplot(133, figsize=(5.0, 3.0))
for
i
,
f
in
enumerate
(
test_acc
):
filepath
=
os
.
path
.
join
(
path
,
f
)
with
open
(
filepath
,
"
r
"
)
as
inf
:
results_csv
=
pd
.
read_csv
(
inf
)
norm_name
=
f
[
len
(
"
test_
loss
"
)
+
1
:
-
len
(
"
:2022-03-24T17:54.csv
"
)
]
norm_name
=
f
[
len
(
"
test_
acc
"
)
+
1
:
-
4
].
split
(
"
:
"
)[
0
]
#
-len(":2022-03-24T17:54.csv")
if
global_epochs
:
rounds
=
results_csv
[
"
rounds
"
].
iloc
[
0
]
print
(
"
Rounds:
"
,
rounds
)
...
...
@@ -188,33 +198,33 @@ def plot_results(path, epochs, global_epochs="True"):
x_label
=
"
communication rounds
"
taccs
.
setdefault
(
norm_name
,
[]).
append
((
means
,
stdevs
,
x_axis
))
for
i
,
tmp
in
enumerate
(
taccs
.
items
()):
(
k
,
v
)
=
tmp
mean_of_means
=
[]
mean_of_std
=
[]
x_axis
=
v
[
0
][
2
]
for
vals
in
v
:
mean_of_means
.
append
(
vals
[
0
])
mean_of_std
.
append
(
vals
[
1
])
print
(
mean_of_means
)
mean_of_means
=
np
.
average
(
mean_of_means
,
axis
=
0
)
print
(
mean_of_means
)
mean_of_std
=
np
.
average
(
mean_of_std
,
axis
=
0
)
tacc_metrics
[
"
avg
"
].
append
(
mean_of_means
)
tacc_metrics
[
"
std
"
].
append
(
mean_of_std
)
tacc_metrics
[
"
name
"
].
append
(
k
)
plot_band
(
x_axis
,
mean_of_means
,
mean_of_std
,
i
,
len
(
taccs
),
"
Testing Accuracy
"
,
k
,
"
upp
er right
"
,
x_label
,
ax
[
2
]
)
for
i
,
tmp
in
enumerate
(
taccs
.
items
()):
(
k
,
v
)
=
tmp
mean_of_means
=
[]
mean_of_std
=
[]
x_axis
=
v
[
0
][
2
]
for
vals
in
v
:
mean_of_means
.
append
(
vals
[
0
])
mean_of_std
.
append
(
vals
[
1
])
print
(
mean_of_means
)
mean_of_means
=
np
.
average
(
mean_of_means
,
axis
=
0
)
print
(
mean_of_means
)
mean_of_std
=
np
.
sqrt
(
np
.
sum
(
np
.
array
(
mean_of_std
)
**
2
,
axis
=
0
)
/
len
(
mean_of_std
)
)
tacc_metrics
[
"
avg
"
].
append
(
mean_of_means
)
tacc_metrics
[
"
std
"
].
append
(
mean_of_std
)
tacc_metrics
[
"
name
"
].
append
(
k
)
plot_band
(
x_axis
,
mean_of_means
,
mean_of_std
,
i
,
len
(
taccs
),
"
Testing Accuracy
"
,
k
,
"
low
er right
"
,
x_label
,
ax
[
2
]
)
for
metric
,
name
in
zip
([
losses_metrics
,
tlosses_metrics
,
tacc_metrics
],
[
"
losses_metrics
"
,
"
tlosses_metrics
"
,
"
accuracy_metrics
"
]):
values
=
[]
...
...
@@ -239,7 +249,7 @@ def plot_results(path, epochs, global_epochs="True"):
print
(
pf
)
pf
=
pf
.
sort_values
([
name
.
split
(
"
_
"
)[
0
]
+
"
_values
"
],
0
,
ascending
=
False
)
pf
.
to_csv
(
os
.
path
.
join
(
path
,
f
"
best_results_
{
name
.
split
(
'
_
'
)[
0
]
}
.csv
"
))
pf
.
to_csv
(
os
.
path
.
join
(
path
,
f
"
best_results_
{
name
.
split
(
'
_
'
)[
0
]
}
.csv
"
)
,
float_format
=
"
%.3f
"
)
fig
.
savefig
(
os
.
path
.
join
(
path
,
"
together.svg
"
),
dpi
=
300
,
format
=
"
svg
"
)
fig
.
savefig
(
os
.
path
.
join
(
path
,
"
together.png
"
),
dpi
=
300
,
format
=
"
png
"
)
...
...
@@ -252,4 +262,4 @@ if __name__ == "__main__":
# 2: the number of epochs / comm rounds to plot for,
# 3: True/False with True meaning plot global epochs and False plot communication rounds
print
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
])
plot_results
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
])
plot_results
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
sys
.
argv
[
3
])
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment