Skip to content
Snippets Groups Projects
Commit 17707ead authored by Jeffrey Wigger's avatar Jeffrey Wigger
Browse files

more experiments

parent fcdf2d50
No related branches found
No related tags found
No related merge requests found
......@@ -52,7 +52,7 @@ m=`cat $ip_machines | grep $(/sbin/ifconfig ens785 | grep 'inet ' | awk '{print
export PYTHONFAULTHANDLER=1
# Base configs for which the gird search is done
tests=("step_configs/config_femnist_topkaccavg.ini")
tests=("step_configs/config_femnist_waveletbound.ini")
# Learning rates
lr="0.01"
# Batch size
......@@ -71,6 +71,7 @@ echo samples per user: $samples_per_user
random_seeds=("97")
# "bior2.2" "rbio2.2"
alphas=("0.0" "0.1" ) #
mhs=("True" "False")
echo batchsize: $batchsize
echo communication rounds per global epoch: $comm_rounds_per_global_epoch
# calculating how many batches there are in a global epoch for each user/proc
......@@ -93,27 +94,31 @@ do
do
for aph in "${alphas[@]}"
do
echo $i
IFS='_' read -ra NAMES <<< $i
IFS='.' read -ra NAME <<< ${NAMES[-1]}
log_dir_base=$nfs_home$logs_subfolder/${NAME[0]}:lr=$lr:r=$comm_rounds_per_global_epoch:b=$batchsize:$(date '+%Y-%m-%dT%H:%M')
echo results are stored in: $log_dir_base
log_dir=$log_dir_base/machine$m
mkdir -p $log_dir
weight_store_dir=$log_dir_base/weights
mkdir -p $weight_store_dir
cp $i $config_file
# changing the config files to reflect the values of the current grid search state
$python_bin/crudini --set $config_file COMMUNICATION addresses_filepath $ip_machines
$python_bin/crudini --set $config_file OPTIMIZER_PARAMS lr $lr
$python_bin/crudini --set $config_file TRAIN_PARAMS rounds $batches_per_comm_round
$python_bin/crudini --set $config_file TRAIN_PARAMS batch_size $batchsize
$python_bin/crudini --set $config_file DATASET random_seed $seed
$python_bin/crudini --set $config_file SHARING lower_bound $aph
$env_python $eval_file -ro 0 -tea $test_after -ld $log_dir -wsd $weight_store_dir -mid $m -ps $procs_per_machine -ms $machines -is $new_iterations -gf $graph -ta $test_after -cf $config_file -ll $log_level
echo $i is done
sleep 300
echo end of sleep
for mh in "${mhs[@]}"
do
echo $i
IFS='_' read -ra NAMES <<< $i
IFS='.' read -ra NAME <<< ${NAMES[-1]}
log_dir_base=$nfs_home$logs_subfolder/${NAME[0]}:lr=$lr:r=$comm_rounds_per_global_epoch:b=$batchsize:$(date '+%Y-%m-%dT%H:%M')
echo results are stored in: $log_dir_base
log_dir=$log_dir_base/machine$m
mkdir -p $log_dir
weight_store_dir=$log_dir_base/weights
mkdir -p $weight_store_dir
cp $i $config_file
# changing the config files to reflect the values of the current grid search state
$python_bin/crudini --set $config_file COMMUNICATION addresses_filepath $ip_machines
$python_bin/crudini --set $config_file OPTIMIZER_PARAMS lr $lr
$python_bin/crudini --set $config_file TRAIN_PARAMS rounds $batches_per_comm_round
$python_bin/crudini --set $config_file TRAIN_PARAMS batch_size $batchsize
$python_bin/crudini --set $config_file DATASET random_seed $seed
$python_bin/crudini --set $config_file SHARING lower_bound $aph
$python_bin/crudini --set $config_file SHARING metro_hastings $mh
$env_python $eval_file -ro 0 -tea $test_after -ld $log_dir -wsd $weight_store_dir -mid $m -ps $procs_per_machine -ms $machines -is $new_iterations -gf $graph -ta $test_after -cf $config_file -ll $log_level
echo $i is done
sleep 300
echo end of sleep
done
done
done
done
......
......@@ -68,10 +68,10 @@ echo samples per user: $samples_per_user
# random_seeds for which to rerun the experiments
#random_seeds=("90" "91" "92" "93" "94")
random_seeds=("97")
# "bior2.2" "rbio2.2"
wavelets=("bior4.4" "rbio4.4" "sym7" "db7" "sym2") #
levels=("4" "None")
random_seeds=("98" "99")
# "bior2.2" "rbio2.2" "sym7" "db7"
wavelets=("rbio2.2" "bior4.4" "rbio4.4" "sym2") #
levels=("None") # "4"
echo batchsize: $batchsize
echo communication rounds per global epoch: $comm_rounds_per_global_epoch
# calculating how many batches there are in a global epoch for each user/proc
......
......@@ -32,7 +32,7 @@ addresses_filepath = ip_addr_6Machines.json
[SHARING]
sharing_package = decentralizepy.sharing.WaveletBound
sharing_class = WaveletBound
alpha=0.1
alpha=0.91
lower_bound=0.1
metro_hastings=True
change_based_selection = True
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment