Skip to content
Snippets Groups Projects
Celeba.py 13.2 KiB
Newer Older
Rishi Sharma's avatar
Rishi Sharma committed
import json
import logging
import os
from collections import defaultdict

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader

import decentralizepy.utils as utils
from decentralizepy.datasets.Data import Data
from decentralizepy.datasets.Dataset import Dataset
from decentralizepy.datasets.Partitioner import DataPartitioner
from decentralizepy.mappings.Mapping import Mapping
Rishi Sharma's avatar
Rishi Sharma committed
from decentralizepy.models.Model import Model

IMAGE_DIM = 84
CHANNELS = 3
NUM_CLASSES = 2


class Celeba(Dataset):
    """
    Class for the Celeba dataset
Rishi Sharma's avatar
Rishi Sharma committed
    """

    def __read_file__(self, file_path):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Read data from the given json file

        Parameters
        ----------
        file_path : str
            The file path

        Returns
        -------
        tuple
            (users, num_samples, data)

        """
Rishi Sharma's avatar
Rishi Sharma committed
        with open(file_path, "r") as inf:
            client_data = json.load(inf)
        return (
            client_data["users"],
            client_data["num_samples"],
            client_data["user_data"],
        )

    def __read_dir__(self, data_dir):
        """
        Function to read all the FEMNIST data files in the directory
Rishi Sharma's avatar
Rishi Sharma committed
        Parameters
        ----------
        data_dir : str
            Path to the folder containing the data files
Rishi Sharma's avatar
Rishi Sharma committed
        Returns
        -------
        3-tuple
            A tuple containing list of clients, number of samples per client,
            and the data items per client
Rishi Sharma's avatar
Rishi Sharma committed
        """
        clients = []
        num_samples = []
        data = defaultdict(lambda: None)

        files = os.listdir(data_dir)
        files = [f for f in files if f.endswith(".json")]
        for f in files:
            file_path = os.path.join(data_dir, f)
            u, n, d = self.__read_file__(file_path)
            clients.extend(u)
            num_samples.extend(n)
            data.update(d)
        return clients, num_samples, data

    def file_per_user(self, dir, write_dir):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Function to read all the FEMNIST data files and write one file per user

        Parameters
        ----------
        dir : str
            Path to the folder containing the data files
        write_dir : str
            Path to the folder to write the files

        """
Rishi Sharma's avatar
Rishi Sharma committed
        clients, num_samples, train_data = self.__read_dir__(dir)
        for index, client in enumerate(clients):
            my_data = dict()
            my_data["users"] = [client]
            my_data["num_samples"] = num_samples[index]
            my_samples = {"x": train_data[client]["x"], "y": train_data[client]["y"]}
            my_data["user_data"] = {client: my_samples}
            with open(os.path.join(write_dir, client + ".json"), "w") as of:
                json.dump(my_data, of)
                print("Created File: ", client + ".json")

    def load_trainset(self):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Loads the training set. Partitions it if needed.

        """
Rishi Sharma's avatar
Rishi Sharma committed
        logging.info("Loading training set.")
        files = os.listdir(self.train_dir)
        files = [f for f in files if f.endswith(".json")]
        files.sort()
        c_len = len(files)

        # clients, num_samples, train_data = self.__read_dir__(self.train_dir)

        if self.sizes == None:  # Equal distribution of data among processes
            e = c_len // self.n_procs
            frac = e / c_len
            self.sizes = [frac] * self.n_procs
            self.sizes[-1] += 1.0 - frac * self.n_procs
            logging.debug("Size fractions: {}".format(self.sizes))

        self.uid = self.mapping.get_uid(self.rank, self.machine_id)
        my_clients = DataPartitioner(files, self.sizes).use(self.uid)
        my_train_data = {"x": [], "y": []}
        self.clients = []
        self.num_samples = []
        logging.debug("Clients Length: %d", c_len)
        logging.debug("My_clients_len: %d", my_clients.__len__())
        for i in range(my_clients.__len__()):
            cur_file = my_clients.__getitem__(i)

            clients, _, train_data = self.__read_file__(
                os.path.join(self.train_dir, cur_file)
            )
            for cur_client in clients:
Rishi Sharma's avatar
Rishi Sharma committed
                logging.debug("Got data of client: {}".format(cur_client))
Rishi Sharma's avatar
Rishi Sharma committed
                self.clients.append(cur_client)
                my_train_data["x"].extend(self.process_x(train_data[cur_client]["x"]))
                my_train_data["y"].extend(train_data[cur_client]["y"])
                self.num_samples.append(len(train_data[cur_client]["y"]))
Rishi Sharma's avatar
Rishi Sharma committed

        logging.debug(
            "Initial shape of x: {}".format(
                np.array(my_train_data["x"], dtype=np.dtype("float32")).shape
            )
        )
Rishi Sharma's avatar
Rishi Sharma committed
        self.train_x = (
            np.array(my_train_data["x"], dtype=np.dtype("float32"))
            .reshape(-1, IMAGE_DIM, IMAGE_DIM, CHANNELS)
            .transpose(0, 3, 1, 2)  # Channel first: torch
        )
        self.train_y = np.array(my_train_data["y"], dtype=np.dtype("int64")).reshape(-1)
        logging.info("train_x.shape: %s", str(self.train_x.shape))
        logging.info("train_y.shape: %s", str(self.train_y.shape))
Rishi Sharma's avatar
Rishi Sharma committed
        assert self.train_x.shape[0] == self.train_y.shape[0]
        assert self.train_x.shape[0] > 0

    def load_testset(self):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Loads the testing set.

        """
Rishi Sharma's avatar
Rishi Sharma committed
        logging.info("Loading testing set.")
        _, _, d = self.__read_dir__(self.test_dir)
        test_x = []
        test_y = []
        for test_data in d.values():
            test_x.extend(self.process_x(test_data["x"]))
            test_y.extend(test_data["y"])
        self.test_x = (
            np.array(test_x, dtype=np.dtype("float32"))
            .reshape(-1, IMAGE_DIM, IMAGE_DIM, CHANNELS)
            .transpose(0, 3, 1, 2)
        )
        self.test_y = np.array(test_y, dtype=np.dtype("int64")).reshape(-1)
        logging.info("test_x.shape: %s", str(self.test_x.shape))
        logging.info("test_y.shape: %s", str(self.test_y.shape))
Rishi Sharma's avatar
Rishi Sharma committed
        assert self.test_x.shape[0] == self.test_y.shape[0]
        assert self.test_x.shape[0] > 0

    def __init__(
        self,
        rank: int,
        machine_id: int,
        mapping: Mapping,
Rishi Sharma's avatar
Rishi Sharma committed
        train_dir="",
        test_dir="",
        images_dir="",
        sizes="",
        test_batch_size=128,
    ):
        """
        Constructor which reads the data files, instantiates and partitions the dataset
Rishi Sharma's avatar
Rishi Sharma committed
        Parameters
        ----------
        rank : int
Rishi Sharma's avatar
Rishi Sharma committed
            Rank of the current process (to get the partition).
        machine_id : int
            Machine ID
        mapping : decentralizepy.mappings.Mapping
            Mapping to convert rank, machine_id -> uid for data partitioning
            It also provides the total number of global processes
Rishi Sharma's avatar
Rishi Sharma committed
        train_dir : str, optional
            Path to the training data files. Required to instantiate the training set
            The training set is partitioned according to the number of global processes and sizes
Rishi Sharma's avatar
Rishi Sharma committed
        test_dir : str. optional
            Path to the testing data files Required to instantiate the testing set
        sizes : list(int), optional
            A list of fractions specifying how much data to alot each process. Sum of fractions should be 1.0
            By default, each process gets an equal amount.
Rishi Sharma's avatar
Rishi Sharma committed
        test_batch_size : int, optional
            Batch size during testing. Default value is 64

Rishi Sharma's avatar
Rishi Sharma committed
        """
        super().__init__(
            rank,
            machine_id,
            mapping,
            train_dir,
            test_dir,
            sizes,
            test_batch_size,
        )
        self.IMAGES_DIR = utils.conditional_value(images_dir, "", None)
        assert self.IMAGES_DIR != None

        if self.__training__:
            self.load_trainset()

        if self.__testing__:
            self.load_testset()

        # TODO: Add Validation

    def process_x(self, raw_x_batch):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Preprocesses the whole batch of images

        Returns
        -------
        np.array
            The images as a numpy array

        """
Rishi Sharma's avatar
Rishi Sharma committed
        x_batch = [self._load_image(i) for i in raw_x_batch]
        x_batch = np.array(x_batch)
        return x_batch

    def _load_image(self, img_name):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Open and load image.

        Returns
        -------
        np.array
            The image as a numpy array

        """
Rishi Sharma's avatar
Rishi Sharma committed
        img = Image.open(os.path.join(self.IMAGES_DIR, img_name[:-4] + ".png"))
        img = img.resize((IMAGE_DIM, IMAGE_DIM)).convert("RGB")
        return np.array(img)

    def get_client_ids(self):
        """
        Function to retrieve all the clients of the current process
Rishi Sharma's avatar
Rishi Sharma committed
        Returns
        -------
        list(str)
            A list of strings of the client ids.
Rishi Sharma's avatar
Rishi Sharma committed
        """
        return self.clients

    def get_client_id(self, i):
        """
        Function to get the client id of the ith sample
Rishi Sharma's avatar
Rishi Sharma committed
        Parameters
        ----------
        i : int
            Index of the sample
Rishi Sharma's avatar
Rishi Sharma committed
        Returns
        -------
        str
            Client ID
Rishi Sharma's avatar
Rishi Sharma committed
        Raises
        ------
        IndexError
            If the sample index is out of bounds
Rishi Sharma's avatar
Rishi Sharma committed
        """
        lb = 0
        for j in range(len(self.clients)):
            if i < lb + self.num_samples[j]:
                return self.clients[j]

        raise IndexError("i is out of bounds!")

    def get_trainset(self, batch_size=1, shuffle=False):
        """
        Function to get the training set
Rishi Sharma's avatar
Rishi Sharma committed
        Parameters
        ----------
        batch_size : int, optional
            Batch size for learning
Rishi Sharma's avatar
Rishi Sharma committed
        Returns
        -------
        torch.utils.Dataset(decentralizepy.datasets.Data)
Rishi Sharma's avatar
Rishi Sharma committed
        Raises
        ------
        RuntimeError
            If the training set was not initialized
Rishi Sharma's avatar
Rishi Sharma committed
        """
        if self.__training__:
            return DataLoader(
                Data(self.train_x, self.train_y), batch_size=batch_size, shuffle=shuffle
            )
        raise RuntimeError("Training set not initialized!")

    def get_testset(self):
        """
        Function to get the test set
Rishi Sharma's avatar
Rishi Sharma committed
        Returns
        -------
        torch.utils.Dataset(decentralizepy.datasets.Data)
Rishi Sharma's avatar
Rishi Sharma committed
        Raises
        ------
        RuntimeError
            If the test set was not initialized
Rishi Sharma's avatar
Rishi Sharma committed
        """
        if self.__testing__:
            return DataLoader(
                Data(self.test_x, self.test_y), batch_size=self.test_batch_size
            )
        raise RuntimeError("Test set not initialized!")

    def test(self, model, loss):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Function to evaluate model on the test dataset.

        Parameters
        ----------
        model : decentralizepy.models.Model
            Model to evaluate
        loss : torch.nn.loss
            Loss function to evaluate

        Returns
        -------
        tuple
            (accuracy, loss_value)

        """
Rishi Sharma's avatar
Rishi Sharma committed
        testloader = self.get_testset()

        logging.debug("Test Loader instantiated.")

        correct_pred = [0 for _ in range(NUM_CLASSES)]
        total_pred = [0 for _ in range(NUM_CLASSES)]

        total_correct = 0
        total_predicted = 0

        with torch.no_grad():
            loss_val = 0.0
            count = 0
            for elems, labels in testloader:
                outputs = model(elems)
                loss_val += loss(outputs, labels).item()
                count += 1
                _, predictions = torch.max(outputs, 1)
                for label, prediction in zip(labels, predictions):
                    logging.debug("{} predicted as {}".format(label, prediction))
                    if label == prediction:
                        correct_pred[label] += 1
                        total_correct += 1
                    total_pred[label] += 1
                    total_predicted += 1

        logging.debug("Predicted on the test set")

        for key, value in enumerate(correct_pred):
            if total_pred[key] != 0:
                accuracy = 100 * float(value) / total_pred[key]
            else:
                accuracy = 100.0
            logging.debug("Accuracy for class {} is: {:.1f} %".format(key, accuracy))

        accuracy = 100 * float(total_correct) / total_predicted
        loss_val = loss_val / count
        logging.info("Overall accuracy is: {:.1f} %".format(accuracy))
        return accuracy, loss_val


class CNN(Model):
Rishi Sharma's avatar
Rishi Sharma committed
    """
    Class for a CNN Model for Celeba

    """
Rishi Sharma's avatar
Rishi Sharma committed

Rishi Sharma's avatar
Rishi Sharma committed
    def __init__(self):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Constructor. Instantiates the CNN Model
            with 84*84*3 Input and 2 output classes

        """
Rishi Sharma's avatar
Rishi Sharma committed
        super().__init__()
Rishi Sharma's avatar
Rishi Sharma committed
        # 2.8k parameters
Rishi Sharma's avatar
Rishi Sharma committed
        self.conv1 = nn.Conv2d(CHANNELS, 32, 3, padding="same")
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(32, 32, 3, padding="same")
        self.conv3 = nn.Conv2d(32, 32, 3, padding="same")
        self.conv4 = nn.Conv2d(32, 32, 3, padding="same")
        self.fc1 = nn.Linear(5 * 5 * 32, NUM_CLASSES)

    def forward(self, x):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Forward pass of the model

        Parameters
        ----------
        x : torch.tensor
            The input torch tensor

        Returns
        -------
        torch.tensor
            The output torch tensor

        """
Rishi Sharma's avatar
Rishi Sharma committed
        x = F.relu(self.pool(self.conv1(x)))
        x = F.relu(self.pool(self.conv2(x)))
        x = F.relu(self.pool(self.conv3(x)))
        x = F.relu(self.pool(self.conv4(x)))
        x = torch.flatten(x, 1)
        x = self.fc1(x)
        return x