Newer
Older
import torchvision
import torchvision.transforms as transforms
from torch import nn
from torch.utils.data import DataLoader
from decentralizepy.datasets.Data import Data
from decentralizepy.datasets.Dataset import Dataset
from decentralizepy.datasets.Partitioner import DataPartitioner, SimpleDataPartitioner
from decentralizepy.mappings.Mapping import Mapping
from decentralizepy.models.Model import Model
NUM_CLASSES = 10
class CIFAR10(Dataset):
"""
Class for the FEMNIST dataset
"""
def load_trainset(self):
"""
Loads the training set. Partitions it if needed.
"""
logging.info("Loading training set.")
trainset = torchvision.datasets.CIFAR10(
root=self.train_dir, train=True, download=True, transform=self.transform
)
c_len = len(trainset)
if self.sizes == None: # Equal distribution of data among processes
e = c_len // self.n_procs
frac = e / c_len
self.sizes = [frac] * self.n_procs
self.sizes[-1] += 1.0 - frac * self.n_procs
logging.debug("Size fractions: {}".format(self.sizes))
self.uid = self.mapping.get_uid(self.rank, self.machine_id)
if not self.partition_niid:
self.trainset = DataPartitioner(trainset, self.sizes).use(self.uid)
train_data = {key: [] for key in range(10)}
for x, y in trainset:
train_data[y].append(x)
all_trainset = []
for y, x in train_data.items():
all_trainset.extend([(a, y) for a in x])
self.trainset = SimpleDataPartitioner(all_trainset, self.sizes).use(
self.uid
)
def load_testset(self):
"""
Loads the testing set.
"""
logging.info("Loading testing set.")
self.testset = torchvision.datasets.CIFAR10(
root=self.test_dir, train=False, download=True, transform=self.transform
)
def __init__(
self,
rank: int,
machine_id: int,
mapping: Mapping,
n_procs="",
train_dir="",
test_dir="",
sizes="",
test_batch_size=1024,
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
):
"""
Constructor which reads the data files, instantiates and partitions the dataset
Parameters
----------
rank : int
Rank of the current process (to get the partition).
machine_id : int
Machine ID
mapping : decentralizepy.mappings.Mapping
Mapping to convert rank, machine_id -> uid for data partitioning
It also provides the total number of global processes
train_dir : str, optional
Path to the training data files. Required to instantiate the training set
The training set is partitioned according to the number of global processes and sizes
test_dir : str. optional
Path to the testing data files Required to instantiate the testing set
sizes : list(int), optional
A list of fractions specifying how much data to alot each process. Sum of fractions should be 1.0
By default, each process gets an equal amount.
test_batch_size : int, optional
Batch size during testing. Default value is 64
partition_niid: bool, optional
When True, partitions dataset in a non-iid way
"""
super().__init__(
rank,
machine_id,
mapping,
train_dir,
test_dir,
sizes,
test_batch_size,
)
self.partition_niid = partition_niid
self.transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
if self.__training__:
self.load_trainset()
if self.__testing__:
self.load_testset()
# TODO: Add Validation
def get_trainset(self, batch_size=1, shuffle=False):
"""
Function to get the training set
Parameters
----------
batch_size : int, optional
Batch size for learning
Returns
-------
torch.utils.Dataset(decentralizepy.datasets.Data)
Raises
------
RuntimeError
If the training set was not initialized
"""
if self.__training__:
return DataLoader(self.trainset, batch_size=batch_size, shuffle=shuffle)
raise RuntimeError("Training set not initialized!")
def get_testset(self):
"""
Function to get the test set
Returns
-------
torch.utils.Dataset(decentralizepy.datasets.Data)
Raises
------
RuntimeError
If the test set was not initialized
"""
if self.__testing__:
return DataLoader(self.testset, batch_size=self.test_batch_size)
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
raise RuntimeError("Test set not initialized!")
def test(self, model, loss):
"""
Function to evaluate model on the test dataset.
Parameters
----------
model : decentralizepy.models.Model
Model to evaluate
loss : torch.nn.loss
Loss function to evaluate
Returns
-------
tuple
(accuracy, loss_value)
"""
testloader = self.get_testset()
logging.debug("Test Loader instantiated.")
correct_pred = [0 for _ in range(NUM_CLASSES)]
total_pred = [0 for _ in range(NUM_CLASSES)]
total_correct = 0
total_predicted = 0
with torch.no_grad():
loss_val = 0.0
count = 0
for elems, labels in testloader:
outputs = model(elems)
loss_val += loss(outputs, labels).item()
count += 1
_, predictions = torch.max(outputs, 1)
for label, prediction in zip(labels, predictions):
logging.debug("{} predicted as {}".format(label, prediction))
if label == prediction:
correct_pred[label] += 1
total_correct += 1
total_pred[label] += 1
total_predicted += 1
logging.debug("Predicted on the test set")
for key, value in enumerate(correct_pred):
if total_pred[key] != 0:
accuracy = 100 * float(value) / total_pred[key]
else:
accuracy = 100.0
logging.debug("Accuracy for class {} is: {:.1f} %".format(key, accuracy))
accuracy = 100 * float(total_correct) / total_predicted
loss_val = loss_val / count
logging.info("Overall accuracy is: {:.1f} %".format(accuracy))
return accuracy, loss_val
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
class CNN(Model):
"""
Class for a CNN Model for CIFAR10
"""
def __init__(self):
"""
Constructor. Instantiates the CNN Model
with 10 output classes
"""
super().__init__()
# 1.6 million params
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, NUM_CLASSES)
def forward(self, x):
"""
Forward pass of the model
Parameters
----------
x : torch.tensor
The input torch tensor
Returns
-------
torch.tensor
The output torch tensor
"""
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x