Skip to content
Snippets Groups Projects
Node.py 3.76 KiB
Newer Older
import logging
import os

from decentralizepy.datasets.Dataset import Dataset
from decentralizepy.graphs.Graph import Graph
from decentralizepy.mappings.Mapping import Mapping
from decentralizepy import utils
from torch import optim
import importlib
Rishi Sharma's avatar
Rishi Sharma committed
class Node:
    """
    This class defines the node (entity that performs learning, sharing and communication).
    """
    def __init__(
        self,
        rank: int,
        mapping: Mapping,
        graph: Graph,
        config,
        iterations = 1,
        log_dir=".",
        log_level=logging.INFO,
        *args
    ):
Rishi Sharma's avatar
Rishi Sharma committed
        """
        Constructor
        Parameters
        ----------
        rank : int
            Rank of process local to the machine
        n_procs_local : int
            Number of processes on current machine
Rishi Sharma's avatar
Rishi Sharma committed
        mapping : decentralizepy.mappings
            The object containing the mapping rank <--> uid
        graph : decentralizepy.graphs
            The object containing the global graph
        config : dict
            A dictionary of configurations. Must contain the following:
            [DATASET]
                dataset_package
                dataset_class
                model_class
            [OPTIMIZER_PARAMS]
                optimizer_package
                optimizer_class
            [TRAIN_PARAMS]
                training_package = decentralizepy.training.Training
                training_class = Training
                epochs_per_round = 25
                batch_size = 64
        log_dir : str
            Logging directory
        log_level : logging.Level
            One of DEBUG, INFO, WARNING, ERROR, CRITICAL
Rishi Sharma's avatar
Rishi Sharma committed
        """
        log_file = os.path.join(log_dir, str(rank) + ".log")
        print(log_file)
        logging.basicConfig(
            filename=log_file,
            format="[%(asctime)s][%(module)s][%(levelname)s] %(message)s",
            level=log_level,
            force=True,
        )

        logging.info("Started process.")

Rishi Sharma's avatar
Rishi Sharma committed
        self.rank = rank
        self.graph = graph
        self.mapping = mapping

        logging.debug("Rank: %d", self.rank)
        logging.debug("type(graph): %s", str(type(self.rank)))
        logging.debug("type(mapping): %s", str(type(self.mapping)))
        
        dataset_configs = dict(config.items("DATASET"))
        dataset_module = importlib.import_module(dataset_configs["dataset_package"])
        dataset_class = getattr(dataset_module, dataset_configs["dataset_class"])
        dataset_params = utils.remove_keys(dataset_configs, ["dataset_package", "dataset_class", "model_class"])
        self.dataset =  dataset_class(rank, **dataset_params)
        self.trainset = self.dataset.get_trainset()

        logging.info("Dataset instantiation complete.")

        model_class = getattr(dataset_module, dataset_configs["model_class"])
        self.model = model_class()

        optimizer_configs = dict(config.items("OPTIMIZER_PARAMS"))
        optimizer_module = importlib.import_module(optimizer_configs["optimizer_package"])
        optimizer_class = getattr(optimizer_module, optimizer_configs["optimizer_class"])
        optimizer_params = utils.remove_keys(optimizer_configs, ["optimizer_package", "optimizer_class"])
        self.optimizer = optimizer_class(self.model.parameters(), **optimizer_params)
Rishi Sharma's avatar
Rishi Sharma committed

        train_configs = dict(config.items("TRAIN_PARAMS"))
        train_module = importlib.import_module(train_configs["training_package"])
        train_class = getattr(train_module, train_configs["training_class"])
        train_params = utils.remove_keys(train_configs, ["training_package", "training_class"])
        self.trainer = train_class(self.model, self.optimizer, **train_params)
        for iteration in range(iterations):
            self.trainer.train(self.trainset)