Newer
Older
import json
import logging
import os
from pathlib import Path
from time import time
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
import torch.fft as fft
from decentralizepy.sharing.Sharing import Sharing
class FFT(Sharing):
"""
This class implements the fft version of model sharing
It is based on PartialModel.py
"""
def __init__(
self,
rank,
machine_id,
communication,
mapping,
graph,
model,
dataset,
log_dir,
alpha=1.0,
dict_ordered=True,
save_shared=False,
metadata_cap=1.0,
pickle=True,
change_based_selection=True,
accumulation=True,
):
"""
Constructor
Parameters
----------
rank : int
Local rank
machine_id : int
Global machine id
communication : decentralizepy.communication.Communication
Communication module used to send and receive messages
mapping : decentralizepy.mappings.Mapping
Mapping (rank, machine_id) -> uid
graph : decentralizepy.graphs.Graph
Graph reprensenting neighbors
model : decentralizepy.models.Model
Model to train
dataset : decentralizepy.datasets.Dataset
Dataset for sharing data. Not implemented yet! TODO
log_dir : str
Location to write shared_params (only writing for 2 procs per machine)
alpha : float
Percentage of model to share
dict_ordered : bool
Specifies if the python dict maintains the order of insertion
save_shared : bool
Specifies if the indices of shared parameters should be logged
metadata_cap : float
Share full model when self.alpha > metadata_cap
pickle : bool
use pickle to serialize the model parameters
change_based_selection : bool
use frequency change to select topk frequencies
accumulation : bool
True if the the indices to share should be selected based on accumulated frequency change
"""
super().__init__(
rank, machine_id, communication, mapping, graph, model, dataset, log_dir
)
self.alpha = alpha
self.dict_ordered = dict_ordered
self.save_shared = save_shared
self.metadata_cap = metadata_cap
self.total_meta = 0
self.pickle = pickle
logging.info("subsampling pickling=" + str(pickle))
if self.save_shared:
# Only save for 2 procs: Save space
if rank != 0 or rank != 1:
self.save_shared = False
if self.save_shared:
self.folder_path = os.path.join(
self.log_dir, "shared_params/{}".format(self.rank)
)
Path(self.folder_path).mkdir(parents=True, exist_ok=True)
self.change_based_selection = change_based_selection
self.accumulation = accumulation
# getting the initial model
with torch.no_grad():
self.model.accumulated_gradients = []
tensors_to_cat = [
v.data.flatten() for _, v in self.model.state_dict().items()
]
concated = torch.cat(tensors_to_cat, dim=0)
self.init_model = fft.rfft(concated)
self.prev = None
if self.accumulation:
if self.model.accumulated_changes is None:
self.model.accumulated_changes = torch.zeros_like(self.init_model)
self.prev = self.init_model
else:
self.model.accumulated_changes += self.init_model - self.prev
self.prev = self.init_model
def apply_fft(self):
"""
Does fft transformation of the model parameters and selects topK (alpha) of them in the frequency domain
based on the undergone change during the current training step
Returns
-------
tuple
(a,b). a: selected fft frequencies (complex numbers), b: Their indices.
"""
logging.info("Returning fft compressed model weights")
tensors_to_cat = [v.data.flatten() for _, v in self.model.state_dict().items()]
concated = torch.cat(tensors_to_cat, dim=0)
assert len(self.model.accumulated_gradients) == 1
diff = self.model.accumulated_gradients[0]
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
_, index = torch.topk(
diff.abs(), round(self.alpha * len(flat_fft)), dim=0, sorted=False
)
else:
_, index = torch.topk(
flat_fft.abs(), round(self.alpha * len(flat_fft)), dim=0, sorted=False
)
return flat_fft[index], index
def serialized_model(self):
"""
Convert model to json dict. self.alpha specifies the fraction of model to send.
Returns
-------
dict
Model converted to json dict
"""
if self.alpha > self.metadata_cap: # Share fully
return super().serialized_model()
with torch.no_grad():
topk, indices = self.apply_fft()
self.model.rewind_accumulation(indices)
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
if self.save_shared:
shared_params = dict()
shared_params["order"] = list(self.model.state_dict().keys())
shapes = dict()
for k, v in self.model.state_dict().items():
shapes[k] = list(v.shape)
shared_params["shapes"] = shapes
shared_params[self.communication_round] = indices.tolist() # is slow
shared_params["alpha"] = self.alpha
with open(
os.path.join(
self.folder_path,
"{}_shared_params.json".format(self.communication_round + 1),
),
"w",
) as of:
json.dump(shared_params, of)
m = dict()
if not self.dict_ordered:
raise NotImplementedError
m["alpha"] = self.alpha
m["params"] = topk.numpy()
m["indices"] = indices.numpy().astype(np.int32)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
self.total_data += len(self.communication.encrypt(m["params"]))
self.total_meta += len(self.communication.encrypt(m["indices"])) + len(
self.communication.encrypt(m["alpha"])
)
return m
def deserialized_model(self, m):
"""
Convert received json dict to state_dict.
Parameters
----------
m : dict
json dict received
Returns
-------
state_dict
state_dict of received
"""
if self.alpha > self.metadata_cap: # Share fully
return super().deserialized_model(m)
with torch.no_grad():
state_dict = self.model.state_dict()
if not self.dict_ordered:
raise NotImplementedError
indices = m["indices"]
alpha = m["alpha"]
params = m["params"]
params_tensor = torch.tensor(params)
indices_tensor = torch.tensor(indices, dtype=torch.long)
ret = dict()
ret["indices"] = indices_tensor
ret["params"] = params_tensor
return ret
def step(self):
"""
Perform a sharing step. Implements D-PSGD.
"""
t_start = time()
shapes = []
lens = []
end_model = None
change = 0
self.model.accumulated_gradients = []
with torch.no_grad():
# FFT of this model
tensors_to_cat = []
for _, v in self.model.state_dict().items():
shapes.append(v.shape)
t = v.flatten()
lens.append(t.shape[0])
tensors_to_cat.append(t)
concated = torch.cat(tensors_to_cat, dim=0)
end_model = fft.rfft(concated)
change = end_model - self.init_model
if self.accumulation:
change += self.model.accumulated_changes
self.model.accumulated_gradients.append(change)
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
data = self.serialized_model()
t_post_serialize = time()
my_uid = self.mapping.get_uid(self.rank, self.machine_id)
all_neighbors = self.graph.neighbors(my_uid)
iter_neighbors = self.get_neighbors(all_neighbors)
data["degree"] = len(all_neighbors)
data["iteration"] = self.communication_round
for neighbor in iter_neighbors:
self.communication.send(neighbor, data)
t_post_send = time()
logging.info("Waiting for messages from neighbors")
while not self.received_from_all():
sender, data = self.communication.receive()
logging.debug("Received model from {}".format(sender))
degree = data["degree"]
iteration = data["iteration"]
del data["degree"]
del data["iteration"]
self.peer_deques[sender].append((degree, iteration, data))
logging.info(
"Deserialized received model from {} of iteration {}".format(
sender, iteration
)
)
t_post_recv = time()
logging.info("Starting model averaging after receiving from all neighbors")
total = None
weight_total = 0
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
for i, n in enumerate(self.peer_deques):
degree, iteration, data = self.peer_deques[n].popleft()
logging.debug(
"Averaging model from neighbor {} of iteration {}".format(n, iteration)
)
data = self.deserialized_model(data)
params = data["params"]
indices = data["indices"]
# use local data to complement
topkf = flat_fft.clone().detach()
topkf[indices] = params
weight = 1 / (max(len(self.peer_deques), degree) + 1) # Metro-Hastings
weight_total += weight
if total is None:
total = weight * topkf
else:
total += weight * topkf
# Metro-Hastings
total += (1 - weight_total) * flat_fft
reverse_total = fft.irfft(total)
start_index = 0
std_dict = {}
for i, key in enumerate(self.model.state_dict()):
end_index = start_index + lens[i]
std_dict[key] = reverse_total[start_index:end_index].reshape(shapes[i])
start_index = end_index
self.model.load_state_dict(std_dict)
logging.info("Model averaging complete")
self.communication_round += 1
with torch.no_grad():
self.model.accumulated_gradients = []
tensors_to_cat = [
v.data.flatten() for _, v in self.model.state_dict().items()
]
concated = torch.cat(tensors_to_cat, dim=0)
self.init_model = fft.rfft(concated)
if self.accumulation:
self.model.accumulated_changes += self.init_model - self.prev
self.prev = self.init_model
t_end = time()
logging.info(
"Sharing::step | Serialize: %f; Send: %f; Recv: %f; Averaging: %f; Total: %f",
t_post_serialize - t_start,
t_post_send - t_post_serialize,
t_post_recv - t_post_send,
t_end - t_post_recv,
t_end - t_start,
)