Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
[DATASET]
dataset_package = decentralizepy.datasets.Celeba
dataset_class = Celeba
model_class = CNN
n_procs = 96
images_dir = /home/risharma/leaf/data/celeba/data/raw/img_align_celeba
train_dir = /home/risharma/leaf/data/celeba/per_user_data/train
test_dir = /home/risharma/leaf/data/celeba/data/test
; python list of fractions below
sizes =
[OPTIMIZER_PARAMS]
optimizer_package = torch.optim
optimizer_class = Adam
lr = 0.001
[TRAIN_PARAMS]
training_package = decentralizepy.training.GradientAccumulator
training_class = GradientAccumulator
epochs_per_round = 5
batch_size = 512
shuffle = True
loss_package = torch.nn
loss_class = CrossEntropyLoss
[COMMUNICATION]
comm_package = decentralizepy.communication.TCP
comm_class = TCP
addresses_filepath = ip_addr_6Machines.json
[SHARING]
sharing_package = decentralizepy.sharing.GrowingAlpha
sharing_class = GrowingAlpha
init_alpha=0.0
max_alpha=1.0
k=8
metadata_cap=0.6