Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
D-Cliques
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SaCS
Distributed Machine Learning
D-Cliques
Commits
f5f9fd1b
You need to sign in or sign up before continuing.
Commit
f5f9fd1b
authored
3 years ago
by
aurelien.bellet
Browse files
Options
Downloads
Patches
Plain Diff
move metropolis to Sec 2
parent
c1840025
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
mlsys2022style/d-cliques.tex
+0
-13
0 additions, 13 deletions
mlsys2022style/d-cliques.tex
mlsys2022style/setting.tex
+14
-1
14 additions, 1 deletion
mlsys2022style/setting.tex
with
14 additions
and
14 deletions
mlsys2022style/d-cliques.tex
+
0
−
13
View file @
f5f9fd1b
...
...
@@ -66,19 +66,6 @@ edge with all other cliques, see Figure~\ref{fig:d-cliques-figure} for the
corresponding D-Cliques network in the case of
$
n
=
100
$
nodes and
$
c
=
10
$
classes. We will explore sparser inter-clique topologies in Section~
\ref
{
section:interclique-topologies
}
.
The mixing matrix
$
W
$
required by D-SGD is obtained from standard
Metropolis-Hasting weights~
\cite
{
xiao2004fast
}
computed from the above
topology, namely:
\begin{equation}
W
_{
ij
}
=
\begin{cases}
\frac
{
1
}{
\max
(
\text
{
degree
}
(i),
\text
{
degree
}
(j)) + 1
}
&
\text
{
if
}
~i
\neq
j
\text
{
and
}
\{
i,j
\}\in
E,
\\
1 -
\sum
_{
j
\neq
i
}
W
_{
ij
}
&
\text
{
if
}
~
$
i
=
j
$
,
\\
0
&
\text
{
otherwise
}
.
\end{cases}
\label
{
eq:metro
}
\end{equation}
We construct D-Cliques by initializing cliques at random, using at most
$
M
$
nodes to limit the intra-clique communication costs, then we
swap nodes between pairs of cliques chosen at random such that the swap
...
...
This diff is collapsed.
Click to expand it.
mlsys2022style/setting.tex
+
14
−
1
View file @
f5f9fd1b
% !TEX root = main.tex
\section
{
Problem S
tatement
}
\section
{
Problem S
etting
}
\label
{
section:problem
}
...
...
@@ -45,6 +45,19 @@ of Problem
must be doubly
stochastic (
$
\sum
_{
j
\in
N
}
W
_{
ij
}
=
1
$
and
$
\sum
_{
j
\in
N
}
W
_{
ji
}
=
1
$
) and
symmetric, i.e.
$
W
_{
ij
}
=
W
_{
ji
}$
~
\cite
{
lian2017d-psgd
}
.
In our experiments,
$
W
$
is given by
standard
Metropolis-Hasting weights~
\cite
{
xiao2004fast
}
computed from the network
topology
$
G
$
, namely:
\todo
{
AB: if we need space we can remove this equation
}
\begin{equation}
W
_{
ij
}
=
\begin{cases}
\frac
{
1
}{
\max
(
\text
{
degree
}
(i),
\text
{
degree
}
(j)) + 1
}
&
\text
{
if
}
~i
\neq
j
\text
{
and
}
\{
i,j
\}\in
E,
\\
1 -
\sum
_{
j
\neq
i
}
W
_{
ij
}
&
\text
{
if
}
i = j,
\\
0
&
\text
{
otherwise
}
.
\end{cases}
\label
{
eq:metro
}
\end{equation}
\begin{algorithm}
[t]
\caption
{
D-SGD, Node
$
i
$}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment