Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
D-Cliques
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
SaCS
Distributed Machine Learning
D-Cliques
Commits
6daebf4a
Commit
6daebf4a
authored
3 years ago
by
aurelien.bellet
Browse files
Options
Downloads
Patches
Plain Diff
define points as x,y instead of s
parent
ce2a41ab
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
mlsys2022style/d-cliques.tex
+3
-2
3 additions, 2 deletions
mlsys2022style/d-cliques.tex
mlsys2022style/setting.tex
+17
-8
17 additions, 8 deletions
mlsys2022style/setting.tex
with
20 additions
and
10 deletions
mlsys2022style/d-cliques.tex
+
3
−
2
View file @
6daebf4a
...
...
@@ -177,9 +177,10 @@ averaging step as in the original version.
rate
$
\gamma
$
, mixing weights
$
W
$
, mini-batch size
$
m
$
, number of
steps
$
K
$
\FOR
{$
k
=
1
,
\ldots
, K
$}
\STATE
$
s
_
i
^{
(
k
)
}
\gets
\text
{
mini
-
batch
sample of size
$
m
$
drawn
\STATE
$
S
_
i
^{
(
k
)
}
\gets
\text
{
mini
-
batch
of
$
m
$
samples
drawn
from~
}
D
_
i
$
\STATE
$
g
_
i
^{
(
k
)
}
\gets
\frac
{
1
}{
|
\textit
{
Clique
}
(
i
)
|
}
\sum
_{
j
\in
\textit
{
Clique
(
i
)
}}
\nabla
F
(
\theta
_
j
^{
(
k
-
1
)
}
; s
_
j
^{
(
k
)
}
)
$
\STATE
$
g
_
i
^{
(
k
)
}
\gets
\frac
{
1
}{
|
\textit
{
Clique
}
(
i
)
|
}
\sum
_{
j
\in
\textit
{
Clique
(
i
)
}}
\nabla
F
(
\theta
_
j
^{
(
k
-
1
)
}
; S
_
j
^{
(
k
)
}
)
$
\STATE
$
\theta
_
i
^{
(
k
-
\frac
{
1
}{
2
}
)
}
\gets
\theta
_
i
^{
(
k
-
1
)
}
-
\gamma
g
_
i
^{
(
k
)
}$
\STATE
$
\theta
_
i
^{
(
k
)
}
\gets
\sum
_{
j
\in
N
}
W
_{
ji
}^{
(
k
)
}
\theta
_
j
^{
(
k
-
\frac
{
1
}{
2
}
)
}$
\ENDFOR
...
...
This diff is collapsed.
Click to expand it.
mlsys2022style/setting.tex
+
17
−
8
View file @
6daebf4a
...
...
@@ -5,7 +5,12 @@
\label
{
section:problem
}
We consider a set
$
N
=
\{
1
,
\dots
, n
\}
$
of
$
n
$
nodes seeking to
collaboratively solve a classification task with
$
L
$
classes. Each node has access to a local dataset that
collaboratively solve a classification task with
$
c
$
classes. We denote a
labeled data point by a tuple
$
(
x,y
)
$
where
$
x
$
represents the data point
(e.g., a feature vector) and
$
y
\in\{
1
,
\dots
,c
\}
$
its label.
Each
node has
access to a local dataset that
follows its own local distribution
$
D
_
i
$
. The goal is to find the parameters
$
\theta
$
of a global model that performs well on the union of the local
distributions by
...
...
@@ -13,13 +18,16 @@ collaboratively solve a classification task with $L$ classes. Each node has acce
the average training loss:
\begin{equation}
\min
_{
\theta
}
\frac
{
1
}{
n
}
\sum
_{
i=1
}^{
n
}
\mathds
{
E
}_
{
s
_
i
\sim
D
_
i
}
[F
_
i(
\theta
;
s
_
i)],
{
(x
_
i,y
_
i)
\sim
D
_
i
}
[F
_
i(
\theta
;
x
_
i,y
_
i)],
\label
{
eq:dist-optimization-problem
}
\end{equation}
where
$
s
_
i
$
is a data example drawn from
$
D
_
i
$
and
$
F
_
i
$
is the loss function
on node
$
i
$
. Therefore,
$
\mathds
{
E
}_{
s
_
i
\sim
D
_
i
}
F
_
i
(
\theta
;s
_
i
)
$
denotes
where
$
(
x
_
i,y
_
i
)
$
is a data point drawn from
$
D
_
i
$
and
$
F
_
i
$
is the loss
function
on node
$
i
$
. Therefore,
$
\mathds
{
E
}_{
(
x
_
i,y
_
i
)
\sim
D
_
i
}
F
_
i
(
\theta
;x
_
i,y
_
i
)
$
denotes
the
expected loss of model
$
x
$
on a random example
$
s
_
i
$
drawn from
$
D
_
i
$
.
expected loss of model
$
\theta
$
over the local data distribution
$
D
_
i
$
.
To collaboratively solve Problem
\eqref
{
eq:dist-optimization-problem
}
, each
node can exchange messages with its neighbors in an undirected network graph
...
...
@@ -31,7 +39,7 @@ between nodes $i$ and $j$.
In this work, we use the popular Decentralized Stochastic
Gradient Descent algorithm, aka D-SGD~
\cite
{
lian2017d-psgd
}
. As
shown in Algorithm~
\ref
{
Algorithm:D-PSGD
}
,
a single iteration of D-SGD at node
$
i
$
consists
of
sampling a mini-batch
a single iteration of D-SGD at node
$
i
$
consists
in
sampling a mini-batch
from its local distribution
$
D
_
i
$
, updating its local model
$
\theta
_
i
$
by taking a stochastic gradient
descent
...
...
@@ -71,9 +79,10 @@ topology $G$, namely:\todo{AB: if we need space we can remove this equation}
learning rate
$
\gamma
$
, mixing weights
$
W
$
, mini-batch size
$
m
$
,
number of steps
$
K
$
\FOR
{$
k
=
1
,
\ldots
, K
$}
\STATE
$
s
_
i
^{
(
k
)
}
\gets
\text
{
mini
-
batch
sample of size
$
m
$
drawn
\STATE
$
S
_
i
^{
(
k
)
}
\gets
\text
{
mini
-
batch
of
$
m
$
samples
drawn
from~
}
D
_
i
$
\STATE
$
\theta
_
i
^{
(
k
-
\frac
{
1
}{
2
}
)
}
\gets
\theta
_
i
^{
(
k
-
1
)
}
-
\gamma
\nabla
F
(
\theta
_
i
^{
(
k
-
1
)
}
; s
_
i
^{
(
k
)
}
)
$
\STATE
$
\theta
_
i
^{
(
k
-
\frac
{
1
}{
2
}
)
}
\gets
\theta
_
i
^{
(
k
-
1
)
}
-
\gamma
\nabla
F
(
\theta
_
i
^{
(
k
-
1
)
}
; S
_
i
^{
(
k
)
}
)
$
\STATE
$
\theta
_
i
^{
(
k
)
}
\gets
\sum
_{
j
\in
N
}
W
_{
ji
}^{
(
k
)
}
\theta
_
j
^{
(
k
-
\frac
{
1
}{
2
}
)
}$
\ENDFOR
\end{algorithmic}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment