Skip to content
Snippets Groups Projects
Commit 533a52e5 authored by Erick Lavoie's avatar Erick Lavoie
Browse files

Added random experiments

parent 1482b551
No related branches found
No related tags found
No related merge requests found
......@@ -331,7 +331,7 @@ We solve this problem by decoupling the gradient averaging from the weight avera
% To regenerate the figure, from directory results/scaling
% python ../../../learn-topology/tools/plot_convergence.py 10/mnist/clique-ring/all/ ../mnist/clique-ring/all/ 1000/mnist/clique-ring/all/ --labels '10 nodes bsz=1280' '100 nodes bsz=128' '1000 nodes bsz=13' --legend 'lower right' --yaxis test-accuracy --save-figure ../../figures/d-cliques-mnist-scaling-clique-ring-cst-updates.png --ymin 80 --add-min-max
% python ../../../learn-topology/tools/plot_convergence.py 10/mnist/clique-ring/all/2021-03-13-18:22:01-CET ../mnist/clique-ring/all/2021-03-10-18:14:35-CET 1000/mnist/clique-ring/all/2021-03-13-18:22:36-CET --labels '10 nodes bsz=1280' '100 nodes bsz=128' '1000 nodes bsz=13' --legend 'lower right' --yaxis test-accuracy --save-figure ../../figures/d-cliques-mnist-scaling-clique-ring-cst-updates.png --ymin 80 --add-min-max
\begin{subfigure}[b]{0.7\textwidth}
\centering
\includegraphics[width=\textwidth]{figures/d-cliques-mnist-scaling-clique-ring-cst-updates}
......
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
20
'
LRS='
0.002
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 1 1 1 1 1 1 1 1 1 1 --dist-optimization d-psgd --topology greedy-diverse-10 --metric dissimilarity --learning-momentum 0.9 --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --single-process --nb-logging-processes 10 --dataset cifar10 --model gn-lenet --accuracy-logging-interval 10 --validation-set-ratio 0.5 --unbiased-gradient --initial-averaging
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
20
'
LRS='
0.002
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 1 1 1 1 1 1 1 1 1 1 --dist-optimization d-psgd --topology greedy-diverse-10 --metric dissimilarity --learning-momentum 0.9 --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --single-process --nb-logging-processes 10 --dataset cifar10 --model gn-lenet --accuracy-logging-interval 10 --validation-set-ratio 0.5 --unbiased-gradient
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
20
'
LRS='
0.002
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 1 1 1 1 1 1 1 1 1 1 --dist-optimization d-psgd --topology greedy-diverse-10 --metric dissimilarity --learning-momentum 0.9 --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --single-process --nb-logging-processes 10 --dataset cifar10 --model gn-lenet --accuracy-logging-interval 10 --validation-set-ratio 0.5
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
20
'
LRS='
0.002
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 1 1 1 1 1 1 1 1 1 1 --dist-optimization d-psgd --topology random-10 --metric dissimilarity --learning-momentum 0.9 --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --single-process --nb-logging-processes 10 --dataset cifar10 --model gn-lenet --accuracy-logging-interval 10 --validation-set-ratio 0.5
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
128
'
LRS='
0.1
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 --dist-optimization d-psgd --topology greedy-diverse-10 --metric dissimilarity --learning-momentum 0. --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --parallel-training --nb-workers 10 --dataset mnist --model linear --unbiased-gradient --initial-averaging
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
128
'
LRS='
0.1
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 --dist-optimization d-psgd --topology greedy-diverse-10 --metric dissimilarity --learning-momentum 0. --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --parallel-training --nb-workers 10 --dataset mnist --model linear --unbiased-gradient
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
128
'
LRS='
0.1
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 --dist-optimization d-psgd --topology greedy-diverse-10 --metric dissimilarity --learning-momentum 0. --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --parallel-training --nb-workers 10 --dataset mnist --model linear
done;
done;
#!/usr/bin/env bash
TOOLS=../../../../learn-topology/tools; CWD="$(pwd)"; cd $TOOLS
BSZS='
128
'
LRS='
0.1
'
for BSZ in $BSZS;
do for LR in $LRS;
do python sgp-mnist.py --nb-nodes 100 --nb-epochs 100 --local-classes 1 --seed 1 --nodes-per-class 10 10 10 10 10 10 10 10 10 10 --global-train-ratios 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 0.802568 --dist-optimization d-psgd --topology random-10 --metric dissimilarity --learning-momentum 0. --sync-per-mini-batch 1 --results-directory $CWD/all --learning-rate $LR --batch-size $BSZ "$@" --parallel-training --nb-workers 10 --dataset mnist --model linear
done;
done;
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment