Skip to content
Snippets Groups Projects
main.bib 28.7 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
@INPROCEEDINGS{Vanhaesebrouck2017a,
  author = {Paul Vanhaesebrouck and Aur\'elien Bellet and Marc Tommasi},
  title = {{D}ecentralized {C}ollaborative {L}earning of {P}ersonalized {M}odels over {N}etworks},
  booktitle = {{AISTATS}},
  year = {2017}
}

@INPROCEEDINGS{Zantedeschi2020a,
  author = {Valentina Zantedeschi and Aur\'elien Bellet and Marc Tommasi},
  title = {{F}ully {D}ecentralized {J}oint {L}earning of {P}ersonalized 
  {M}odels and {C}ollaboration {G}raphs},
  booktitle = {{AISTATS}},
  year = {2020}
}



@inproceedings{smith2017federated,
  title={{Federated Multi-Task Learning}},
  author={Smith, Virginia and Chiang, Chao-Kai and Sanjabi, Maziar and Talwalkar, Ameet S.},
  booktitle={NIPS},
  year={2017}
}

@inproceedings{perso_fl_mean,
  title={{Lower Bounds and Optimal Algorithms for Personalized Federated Learning}},
  author={Filip Hanzely and Slavomír Hanzely and Samuel Horváth and Peter Richtarik},
  booktitle={NeurIPS},
  year={2020}
}

@inproceedings{maml,
  title={{Personalized Federated Learning with Theoretical Guarantees: A Model-Agnostic Meta-Learning Approach}},
  author={Alireza Fallah and Aryan Mokhtari and Asuman Ozdaglar},
  booktitle={NeurIPS},
  year={2020}
}

@inproceedings{moreau,
  title={{Personalized Federated Learning with Moreau Envelopes}},
  author={Canh T. Dinh and Nguyen H. Tran and Tuan Dung Nguyen},
  booktitle={NeurIPS},
  year={2020}
}

@techreport{momentum_noniid,
    title={{Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data}},
    author={Tao Lin and Sai Praneeth Karimireddy and Sebastian U. Stich and Martin Jaggi},
    year={2021},
    institution = {arXiv:2102.04761}
}

@techreport{tornado,
    title={TornadoAggregate: Accurate and Scalable Federated Learning via the Ring-Based Architecture},
    author={Jin-Woo Lee and Jaehoon Oh and Sungsu Lim and Se-Young Yun and Jae-Gil Lee},
    year={2020},
    institution = {arXiv:2012.03214}
}

@techreport{cross_gradient,
    title={{Cross-Gradient Aggregation for Decentralized Learning from Non-IID data}},
    author={Yasaman Esfandiari and Sin Yong Tan and Zhanhong Jiang and Aditya Balu and Ethan Herron and Chinmay Hegde and Soumik Sarkar},
    year={2021},
    institution = {arXiv:2103.02051}
}

@techreport{consensus_distance,
    title={{Consensus Control for Decentralized Deep Learning}},
    author={Lingjing Kong and Tao Lin and Anastasia Koloskova and Martin Jaggi and Sebastian U. Stich},
    year={2021},
    institution = {arXiv:2102.04828}
}

@INPROCEEDINGS{Colin2016a,
  author = {Igor Colin and Aur\'elien Bellet and Joseph Salmon and St\'ephan Cl\'emen\c{c}on},
  title = {{G}ossip {D}ual {A}veraging for {D}ecentralized {O}ptimization of {P}airwise {F}unctions},
  booktitle = {{ICML}},
  year = {2016}
}

@inproceedings{scaffold,
  title={{SCAFFOLD: Stochastic Controlled Averaging for On-Device Federated Learning}},
  author={Sai Praneeth Karimireddy and Satyen Kale and Mehryar Mohri and Sashank J. Reddi and Sebastian U. Stich and Ananda Theertha Suresh},
  booktitle={ICML},
  year={2020}
}

@inproceedings{marfoq,
  title={{Throughput-Optimal Topology Design for Cross-Silo Federated Learning}},
  author={Othmane Marfoq and Chuan Xu and Giovanni Neglia and Richard Vidal},
  booktitle={NeurIPS},
  year={2020}
}

@inproceedings{Lian2018,
  Author = {Xiangru Lian and Wei Zhang and Ce Zhang and Ji Liu},
  Booktitle = {ICML},
  Title = {{Asynchronous Decentralized Parallel Stochastic Gradient Descent}},
  Year = {2018}}

@inproceedings{fedprox,
 author = {Tian Li and Anit Kumar Sahu and Manzil Zaheer and Maziar Sanjabi and Ameet Talwalkar and Virginia Smith},
 title = {{Federated Optimization in Heterogeneous Networks}},
 booktitle = {MLSys},
 year = {2020}
} 

@inproceedings{quagmire,
  title={{The Non-IID Data Quagmire of Decentralized Machine Learning}},
  author={Kevin Hsieh and Amar Phanishayee and Onur Mutlu and Phillip B. Gibbons},
  booktitle={ICML},
  year={2020}
}

@inproceedings{mcmahan2016communication,
  title={Communication-efficient learning of deep networks from decentralized data},
  author={McMahan, H. Brendan and Moore, Eider and Ramage, Daniel and Hampson, Seth and Ag\"uera y Arcas, Blaise},
  booktitle={AISTATS},
  year={2017}
}

@inproceedings{neglia2020,
  title={Decentralized gradient methods: does topology matter?},
  author={Giovanni Neglia and Chuan Xu and Don Towsley and Gianmarco Calbi},
  booktitle={AISTATS},
  year={2020}
}

@techreport{amp_dec,
    title={{Privacy Amplification by Decentralization}},
    author={Edwige Cyffers and Aurélien Bellet},
    year={2020},
    institution = {arXiv:2012.05326}
}

@article{Duchi2012a,
    Author = {John C. Duchi and Alekh Agarwal and Martin J. Wainwright},
    Date-Modified = {2014-10-30 15:23:27 +0000},
    Journal = {{IEEE} {T}ransactions on {A}utomatic {C}ontrol},
    Keywords = {optimization, distributed},
    Number = {3},
    Owner = {aurelien},
    Pages = {592--606},
    Timestamp = {2013.09.16},
    Title = {{D}ual {A}veraging for {D}istributed {O}ptimization: {C}onvergence {A}nalysis and {N}etwork {S}caling},
    Volume = {57},
    Year = {2012}}

@article{jelasity,
    Author = {István Hegedüs and Gábor Danner and Márk Jelasity},
    Journal = {Journal of Parallel and Distributed Computing},
    Pages = {109--124},
    Title = {{Decentralized learning works: An empirical comparison of gossip learning and federated learning}},
    Volume = {148},
    Year = {2021}}

@article{Nedic18,
    Author = {Angelia Nedić and Alex Olshevsky and Michael G. Rabbat},
    Journal = {Proceedings of the IEEE},
    Number = {5},
    Pages = {953--976},
    Title = {{Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization}},
    Volume = {106},
    Year = {2018}}

@techreport{kairouz2019advances,
    title={{Advances and Open Problems in Federated Learning}},
    author={Peter Kairouz and others},
    year={2019},
    institution = {arXiv:1912.04977}
}

@article{tibshirani1996regression,
  title={Regression shrinkage and selection via the lasso},
  author={Tibshirani, Robert},
  journal={Journal of the Royal Statistical Society. Series B (Methodological)},
  pages={267--288},
  year={1996},
  publisher={JSTOR}
}
@article{candes2009exact,
  title={Exact matrix completion via convex optimization},
  author={Cand{\`e}s, Emmanuel J and Recht, Benjamin},
  journal={Foundations of Computational mathematics},
  volume={9},
  number={6},
  pages={717--772},
  year={2009},
  publisher={Springer}
}
@article{candes2010power,
  title={The power of convex relaxation: Near-optimal matrix completion},
  author={Cand{\`e}s, Emmanuel J and Tao, Terence},
  journal={IEEE Transactions on Information Theory},
  volume={56},
  number={5},
  pages={2053--2080},
  year={2010},
  publisher={IEEE}
}
@article{recht2011simpler,
  title={A simpler approach to matrix completion},
  author={Recht, Benjamin},
  journal={Journal of Machine Learning Research},
  volume={12},
  number={Dec},
  pages={3413--3430},
  year={2011}
}
@article{gross2010quantum,
  title={Quantum state tomography via compressed sensing},
  author={Gross, David and Liu, Yi-Kai and Flammia, Steven T and Becker, Stephen and Eisert, Jens},
  journal={Physical review letters},
  volume={105},
  number={15},
  pages={150401},
  year={2010},
  publisher={APS}
}
@article{gross2011recovering,
  title={Recovering low-rank matrices from few coefficients in any basis},
  author={Gross, David},
  journal={IEEE Transactions on Information Theory},
  volume={57},
  number={3},
  pages={1548--1566},
  year={2011},
  publisher={IEEE}
}
@article{koltchinskii2011nuclear,
  title={Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion},
  author={Koltchinskii, Vladimir and Lounici, Karim and Tsybakov, Alexandre B},
  journal={The Annals of Statistics},
  pages={2302--2329},
  year={2011},
  publisher={JSTOR}
}
@article{bhojanapalli2016global,
  title={Global Optimality of Local Search for Low Rank Matrix Recovery},
  author={Bhojanapalli, Srinadh and Neyshabur, Behnam and Srebro, Nathan},
  journal={arXiv preprint arXiv:1605.07221},
  year={2016}
}
@article{koren2009matrix,
  title={Matrix factorization techniques for recommender systems},
  author={Koren, Yehuda and Bell, Robert and Volinsky, Chris and others},
  journal={Computer},
  volume={42},
  number={8},
  pages={30--37},
  year={2009},
  publisher={Institute of Electrical and Electronics Engineers, Inc., 3 Park Avenue, 17 th Fl New York NY 10016-5997 United States}
}
@article{candes2015phase,
  title={Phase retrieval via matrix completion},
  author={Candes, Emmanuel J and Eldar, Yonina C and Strohmer, Thomas and Voroninski, Vladislav},
  journal={SIAM review},
  volume={57},
  number={2},
  pages={225--251},
  year={2015},
  publisher={SIAM}
}
@inproceedings{ji2010robust,
  title={Robust video denoising using low rank matrix completion.},
  author={Ji, Hui and Liu, Chaoqiang and Shen, Zuowei and Xu, Yuhong},
  booktitle={CVPR},
  pages={1791--1798},
  year={2010},
  organization={Citeseer}
}
@inproceedings{wu2010robust,
  title={Robust photometric stereo via low-rank matrix completion and recovery},
  author={Wu, Lun and Ganesh, Arvind and Shi, Boxin and Matsushita, Yasuyuki and Wang, Yongtian and Ma, Yi},
  booktitle={Asian Conference on Computer Vision},
  pages={703--717},
  year={2010},
  organization={Springer}
}
@inproceedings{goldberg2010transduction,
  title={Transduction with matrix completion: Three birds with one stone},
  author={Goldberg, Andrew and Recht, Ben and Xu, Junming and Nowak, Robert and Zhu, Xiaojin},
  booktitle={Advances in neural information processing systems},
  pages={757--765},
  year={2010}
}
@inproceedings{xie2014learning,
  title={Learning from the past: intelligent on-line weather monitoring based on matrix completion},
  author={Xie, Kun and Wang, Lele and Wang, Xin and Wen, Jigang and Xie, Gaogang},
  booktitle={Distributed Computing Systems (ICDCS), 2014 IEEE 34th International Conference on},
  pages={176--185},
  year={2014},
  organization={IEEE}
}
@inproceedings{cabral2013unifying,
  title={Unifying nuclear norm and bilinear factorization approaches for low-rank matrix decomposition},
  author={Cabral, Ricardo and De La Torre, Fernando and Costeira, Jo{\~a}o P and Bernardino, Alexandre},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={2488--2495},
  year={2013}
}
@inproceedings{cabral2011matrix,
  title={Matrix Completion for Multi-label Image Classification.},
  author={Cabral, Ricardo Silveira and De la Torre, Fernando and Costeira, Jo{\~a}o Paulo and Bernardino, Alexandre},
  booktitle={NIPS},
  volume={201},
  number={1},
  pages={2},
  year={2011}
}
@inproceedings{zhou2012multi,
  title={Multi-task learning: Theory, algorithms, and applications},
  author={Zhou, Jiayu and Chen, Jianhui and Ye, Jieping},
  booktitle={U RL https://www. siam. org/meetings/sdm12/zhou\_chen\_ye. pdf},
  year={2012}
}
@article{toh1999sdpt3,
  title={SDPT3—a MATLAB software package for semidefinite programming, version 1.3},
  author={Toh, Kim-Chuan and Todd, Michael J and T{\"u}t{\"u}nc{\"u}, Reha H},
  journal={Optimization methods and software},
  volume={11},
  number={1-4},
  pages={545--581},
  year={1999},
  publisher={Taylor \& Francis}
}
@article{sturm1999using,
  title={Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones},
  author={Sturm, Jos F},
  journal={Optimization methods and software},
  volume={11},
  number={1-4},
  pages={625--653},
  year={1999},
  publisher={Taylor \& Francis}
}
@article{cai2010singular,
  title={A singular value thresholding algorithm for matrix completion},
  author={Cai, Jian-Feng and Cand{\`e}s, Emmanuel J and Shen, Zuowei},
  journal={SIAM Journal on Optimization},
  volume={20},
  number={4},
  pages={1956--1982},
  year={2010},
  publisher={SIAM}
}
@article{ma2011fixed,
  title={Fixed point and Bregman iterative methods for matrix rank minimization},
  author={Ma, Shiqian and Goldfarb, Donald and Chen, Lifeng},
  journal={Mathematical Programming},
  volume={128},
  number={1-2},
  pages={321--353},
  year={2011},
  publisher={Springer}
}
@inproceedings{hazan2008sparse,
  title={Sparse approximate solutions to semidefinite programs},
  author={Hazan, Elad},
  booktitle={Latin American Symposium on Theoretical Informatics},
  pages={306--316},
  year={2008},
  organization={Springer}
}
@inproceedings{jaggi2010simple,
  title={A simple algorithm for nuclear norm regularized problems},
  author={Jaggi, Martin and Sulovsk, Marek and others},
  booktitle={Proceedings of the 27th International Conference on Machine Learning (ICML-10)},
  pages={471--478},
  year={2010}
}
@article{bellet2014distributed,
  title={Distributed Frank-Wolfe algorithm: A unified framework for communication-efficient sparse learning},
  author={Bellet, Aur{\'e}lien and Liang, Yingyu and Garakani, Alireza Bagheri and Balcan, Maria-Florina and Sha, Fei},
  journal={CoRR, abs/1404.2644},
  year={2014},
  publisher={Citeseer}
}
@inproceedings{wang2016parallel,
  title={Parallel and distributed block-coordinate Frank-Wolfe algorithms},
  author={Wang, Yu-Xiang and Sadhanala, Veeranjaneyulu and Dai, Wei and Neiswanger, Willie and Sra, Suvrit and Xing, Eric},
  booktitle={International Conference on Machine Learning},
  pages={1548--1557},
  year={2016}
}
@article{lacoste2012block,
  title={Block-coordinate Frank-Wolfe optimization for structural SVMs},
  author={Lacoste-Julien, Simon and Jaggi, Martin and Schmidt, Mark and Pletscher, Patrick},
  journal={arXiv preprint arXiv:1207.4747},
  year={2012}
}
@article{frank1956algorithm,
  title={An algorithm for quadratic programming},
  author={Frank, Marguerite and Wolfe, Philip},
  journal={Naval research logistics quarterly},
  volume={3},
  number={1-2},
  pages={95--110},
  year={1956},
  publisher={Wiley Online Library}
}
@article{clarkson2010coresets,
  title={Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm},
  author={Clarkson, Kenneth L},
  journal={ACM Transactions on Algorithms (TALG)},
  volume={6},
  number={4},
  pages={63},
  year={2010},
  publisher={ACM}
}
@inproceedings{jaggi2013revisiting,
  title={Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.},
  author={Jaggi, Martin},
  booktitle={ICML (1)},
  pages={427--435},
  year={2013}
}
@article{pong2010trace,
  title={Trace norm regularization: Reformulations, algorithms, and multi-task learning},
  author={Pong, Ting Kei and Tseng, Paul and Ji, Shuiwang and Ye, Jieping},
  journal={SIAM Journal on Optimization},
  volume={20},
  number={6},
  pages={3465--3489},
  year={2010},
  publisher={SIAM}
}
@inproceedings{harchaoui2012large,
  title={Large-scale image classification with trace-norm regularization},
  author={Harchaoui, Zaid and Douze, Matthijs and Paulin, Mattis and Dudik, Miroslav and Malick, J{\'e}r{\^o}me},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on},
  pages={3386--3393},
  year={2012},
  organization={IEEE}
}
@article{ILSVRC15,
Author = {Olga Russakovsky and Jia Deng and Hao Su and Jonathan Krause and Sanjeev Satheesh and Sean Ma and Zhiheng Huang and Andrej Karpathy and Aditya Khosla and Michael Bernstein and Alexander C. Berg and Li Fei-Fei},
Title = {{ImageNet Large Scale Visual Recognition Challenge}},
Year = {2015},
journal   = {International Journal of Computer Vision (IJCV)},
doi = {10.1007/s11263-015-0816-y},
volume={115},
number={3},
pages={211-252}
}
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={770--778},
  year={2016}
}
@misc{chollet2015keras,
  title={Keras},
  author={Chollet, Fran\c{c}ois},
  year={2015},
  publisher={GitHub},
  howpublished={\url{https://github.com/fchollet/keras}},
}
@article{bach2008consistency,
  title={Consistency of trace norm minimization},
  author={Bach, Francis R},
  journal={Journal of Machine Learning Research},
  volume={9},
  number={Jun},
  pages={1019--1048},
  year={2008}
}
@inproceedings{Zaharia:2010:SCC:1863103.1863113,
 author = {Zaharia, Matei and Chowdhury, Mosharaf and Franklin, Michael J. and Shenker, Scott and Stoica, Ion},
 title = {Spark: Cluster Computing with Working Sets},
 booktitle = {Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing},
 series = {HotCloud'10},
 year = {2010},
 location = {Boston, MA},
 pages = {10--10},
 numpages = {1},
 url = {http://dl.acm.org/citation.cfm?id=1863103.1863113},
 acmid = {1863113},
 publisher = {USENIX Association},
 address = {Berkeley, CA, USA},
}
@misc{reduce,
  publisher={stackoverflow},
  howpublished={\url{http://stackoverflow.com/questions/37422222/how-to-force-spark-to-perform-reduction-locally}},
}
@misc{ht,
  publisher={hortonworks},
  howpublished={\url{https://community.hortonworks.com/questions/52561/spark-and-hyper-threading.html}},
}
@article{wai2017decentralized,
  title={Decentralized Frank-Wolfe Algorithm for Convex and Non-convex Problems},
  author={Wai, Hoi-To and Lafond, Jean and Scaglione, Anna and Moulines, Eric},
  journal={IEEE Transactions on Automatic Control},
  year={2017},
  publisher={IEEE}
}
@inproceedings{mcdonald2009efficient,
  title={Efficient large-scale distributed training of conditional maximum entropy models},
  author={Mcdonald, Ryan and Mohri, Mehryar and Silberman, Nathan and Walker, Dan and Mann, Gideon S},
  booktitle={Advances in Neural Information Processing Systems},
  pages={1231--1239},
  year={2009}
}
@inproceedings{zinkevich2010parallelized,
  title={Parallelized stochastic gradient descent},
  author={Zinkevich, Martin and Weimer, Markus and Li, Lihong and Smola, Alex J},
  booktitle={Advances in neural information processing systems},
  pages={2595--2603},
  year={2010}
}
@article{dean2008mapreduce,
  title={MapReduce: simplified data processing on large clusters},
  author={Dean, Jeffrey and Ghemawat, Sanjay},
  journal={Communications of the ACM},
  volume={51},
  number={1},
  pages={107--113},
  year={2008},
  publisher={ACM}
}
@article{kuczynski1992estimating,
  title={Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start},
  author={Kuczy{\'n}ski, J and Wo{\'z}niakowski, H},
  journal={SIAM journal on matrix analysis and applications},
  volume={13},
  number={4},
  pages={1094--1122},
  year={1992},
  publisher={SIAM}
}
@inproceedings{lacoste2015global,
  title={On the global linear convergence of Frank-Wolfe optimization variants},
  author={Lacoste-Julien, Simon and Jaggi, Martin},
  booktitle={Advances in Neural Information Processing Systems},
  pages={496--504},
  year={2015}
}
@inproceedings{garber2015faster,
  title={Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets.},
  author={Garber, Dan and Hazan, Elad},
  booktitle={ICML},
  pages={541--549},
  year={2015}
}
@article{wolfe1970convergence,
  title={Convergence theory in nonlinear programming},
  author={Wolfe, Philip},
  journal={Integer and nonlinear programming},
  pages={1--36},
  year={1970},
  publisher={North-Holland Amsterdam}
}
@article{guelat1986some,
  title={Some comments on Wolfe's ‘away step’},
  author={Gu{\'e}lat, Jacques and Marcotte, Patrice},
  journal={Mathematical Programming},
  volume={35},
  number={1},
  pages={110--119},
  year={1986},
  publisher={Springer}
}
@article{beck2004conditional,
  title={A conditional gradient method with linear rate of convergence for solving convex linear systems},
  author={Beck, Amir and Teboulle, Marc},
  journal={Mathematical Methods of Operations Research},
  volume={59},
  number={2},
  pages={235--247},
  year={2004},
  publisher={Springer}
}
@article{pena2016neumann,
  title={On the von Neumann and Frank--Wolfe Algorithms with Away Steps},
  author={Pena, Javier and Rodr{\'\i}guez, Daniel and Soheili, Negar},
  journal={SIAM Journal on Optimization},
  volume={26},
  number={1},
  pages={499--512},
  year={2016},
  publisher={SIAM}
}
@article{damla2008linear,
  title={Linear convergence of a modified Frank--Wolfe algorithm for computing minimum-volume enclosing ellipsoids},
  author={Damla Ahipasaoglu, S and Sun, Peng and Todd, Michael J},
  journal={Optimisation Methods and Software},
  volume={23},
  number={1},
  pages={5--19},
  year={2008},
  publisher={Taylor \& Francis}
}
@article{nanculef2014novel,
  title={A novel Frank--Wolfe algorithm. Analysis and applications to large-scale SVM training},
  author={{\~N}anculef, Ricardo and Frandi, Emanuele and Sartori, Claudio and Allende, H{\'e}ctor},
  journal={Information Sciences},
  volume={285},
  pages={66--99},
  year={2014},
  publisher={Elsevier}
}
@inproceedings{liu2017approximate,
  title={Approximate Conditional Gradient Descent on Multi-Class Classification.},
  author={Liu, Zhuanghua and Tsang, Ivor},
  booktitle={AAAI},
  pages={2301--2307},
  year={2017}
}
@article{moharrerdistributing,
  title={Distributing Frank-Wolfe via Map-Reduce},
  author={Moharrer, Armin and Ioannidis, Stratis}
}
@inproceedings{dudik2012lifted,
  title={Lifted coordinate descent for learning with trace-norm regularization},
  author={Dudik, Miroslav and Harchaoui, Zaid and Malick, J{\'e}r{\^o}me},
  booktitle={Artificial Intelligence and Statistics},
  pages={327--336},
  year={2012}
}
@article{toh2010accelerated,
  title={An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems},
  author={Toh, Kim-Chuan and Yun, Sangwoon},
  journal={Pacific Journal of Optimization},
  volume={6},
  number={615-640},
  pages={15},
  year={2010}
}

@inproceedings{lian2017d-psgd,
  title = {{Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent}},
  author = {Lian, Xiangru and Zhang, Ce and Zhang, Huan and Hsieh, Cho-Jui and Zhang, Wei and Liu, Ji},
  booktitle = {NIPS},
  year = {2017}
}

@article{nedic2016sgp, 
    author={{Nedić}, Angelia and {Olshevsky}, Alex}, 
    journal={IEEE Transactions on Automatic Control}, 
    title={Stochastic Gradient-Push for Strongly Convex Functions on Time-Varying Directed Graphs}, 
    year={2016}, 
    volume={61}, 
    number={12}, 
    pages={3936-3947},
}

@article{assran2019stochastic,
    title={Stochastic Gradient Push for Distributed Deep Learning},
    author={Mahmoud Assran and Nicolas Loizou and Nicolas Ballas and Michael Rabbat},
    year={2019},
    journal={International Conference on Machine Learning}
}

@incollection{ketkar2017introduction,
  title={Introduction to pytorch},
  author={Ketkar, Nikhil},
  booktitle={Deep learning with python},
  pages={195--208},
  year={2017},
  publisher={Springer}
}

@article{boyd2006randomized,
  title={{Randomized Gossip Algorithms}},
  author={Boyd, Stephen and Ghosh, Arpita and Prabhakar, Balaji and Shah, Devavrat},
  journal={IEEE Transactions on Information Theory},
  volume={52},
  number={6},
  pages={2508--2530},
  year={2006},
  publisher={IEEE},
  doi={10.1109/TIT.2006.874516}
}

@article{kempe2003gossip,
  title={{Gossip-based Computation of Aggregate Information}},
  author={Kempe, David and Dobra, Alin and Gehrke, Johannes},
  journal={Foundations of Computer Science},
  year={2003},
  organization={IEEE}
}

@article{nedic2018network,
  title={{Network Topology and Communication-Computation Tradeoffs in Decentralized Optimization}},
  author={Nedi{\'c}, Angelia and Olshevsky, Alex and Rabbat, Michael G},
  journal={Proceedings of the IEEE},
  volume={106},
  number={5},
  pages={953--976},
  year={2018},
  publisher={IEEE}
}

@inproceedings{tang18a,
  title = 	 {{$D^2$: Decentralized Training over Decentralized Data}},
  author = 	 {Tang, Hanlin and Lian, Xiangru and Yan, Ming and Zhang, Ce and Liu, Ji},
  booktitle = 	 {ICML},
  year = 	 {2018}
}

@article{xiao2007distributed,
  title={{Distributed Average Consensus with Least-Mean-Square Deviation}},
  author={Xiao, Lin and Boyd, Stephen and Kim, Seung-Jean},
  journal={Journal of parallel and distributed computing},
  volume={67},
  number={1},
  pages={33--46},
  year={2007},
  publisher={Elsevier}
}

@misc{mnistWebsite,
  title={{The MNIST database of handwritten digits}},
  author={LeCun, Yann and Cortes, Corinna and Burges, Christopher J.C.},
  year={2020},
  howpublished={\url{http://yann.lecun.com/exdb/mnist/}}
}

@misc{shallue2018measuring,
    title={{Measuring the Effects of Data Parallelism on Neural Network Training}},
    author={Christopher J. Shallue and Jaehoon Lee and Joseph Antognini and Jascha Sohl-Dickstein and Roy Frostig and George E. Dahl},
    year={2018},
    eprint={1811.03600},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

@article{watts1998collective,
  title={Collective dynamics of ‘small-world’networks},
  author={Watts, Duncan J and Strogatz, Steven H},
  journal={nature},
  volume={393},
  number={6684},
  pages={440--442},
  year={1998},
  publisher={Nature Publishing Group}
}

@book{watts2000small,
  title={Small worlds: The dynamics of networks between order and randomness},
  author={Watts, Duncan J},
  year={2000},
  publisher={Princeton University Press}
}

% Random Model Walk !!!
@article{ormandi2013gossip,
  title={Gossip learning with linear models on fully distributed data},
  author={Orm{\'a}ndi, R{\'o}bert and Heged{\H{u}}s, Istv{\'a}n and Jelasity, M{\'a}rk},
  journal={Concurrency and Computation: Practice and Experience},
  volume={25},
  number={4},
  pages={556--571},
  year={2013},
  publisher={Wiley Online Library}
}

% Random Model Walk application to mobile computing
@phdthesis{berta2020collaborative,
  title={Collaborative Mobile Gossip Learning},
  author={Berta, {\'A}rp{\'a}d},
  year={2020},
  school={szte}
}

% Scalable SGD (fully connected topology but not complete averaging every step and asynchronous local updates)
@misc{nadiradze2020swarmsgd,
      title={SwarmSGD: Scalable Decentralized SGD with Local Updates}, 
      author={Giorgi Nadiradze and Amirmojtaba Sabour and Dan Alistarh and Aditya Sharma and Ilia Markov and Vitaly Aksenov},
      year={2020},
      eprint={1910.12308},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

% Theoretical analysis of fully decentralized sgd
% Cite this instead: https://proceedings.icml.cc/paper/2020/file/6c2e49911b68d315555d5b3eb0dd45bf-Paper.pdf
@article{koloskova2020unified,
  title={A unified theory of decentralized sgd with changing topology and local updates},
  author={Koloskova, Anastasia and Loizou, Nicolas and Boreiri, Sadra and Jaggi, Martin and Stich, Sebastian U},
  journal={arXiv preprint arXiv:2003.10422},
  year={2020}
}

@misc{gaur2020training,
      title={{Training Deep Neural Networks Without Batch Normalization}}, 
      author={Divya Gaur and Joachim Folz and Andreas Dengel},
      year={2020},
      eprint={2008.07970},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@misc{you2017large,
      title={Large Batch Training of Convolutional Networks}, 
      author={Yang You and Igor Gitman and Boris Ginsburg},
      year={2017},
      eprint={1708.03888},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{wu2018group,
      title={Group Normalization}, 
      author={Yuxin Wu and Kaiming He},
      year={2018},
      eprint={1803.08494},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@article{krizhevsky2009learning,
  title={{Learning Multiple Layers of Features from Tiny Images}},
  author={Krizhevsky, Alex},
  year={2009},
  howpublished={\url{https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf}},
}

@article{xiao2004fast,
  title={Fast linear iterations for distributed averaging},
  author={Xiao, Lin and Boyd, Stephen},
  journal={Systems \& Control Letters},
  volume={53},
  number={1},
  pages={65--78},
  year={2004},
  publisher={Elsevier}
}

@article{jelasity2007gossip,
  title={Gossip-based peer sampling},
  author={Jelasity, M{\'a}rk and Voulgaris, Spyros and Guerraoui, Rachid and Kermarrec, Anne-Marie and Van Steen, Maarten},
  journal={ACM Transactions on Computer Systems (TOCS)},
  volume={25},
  number={3},
  pages={8--es},
  year={2007},
  publisher={ACM New York, NY, USA}
}

@InProceedings{pmlr-v28-sutskever13, 
    title = {On the importance of initialization and momentum in deep learning}, 
    author = {Ilya Sutskever and James Martens and George Dahl and Geoffrey Hinton}, 
    booktitle = {ICML}, 
    year = {2013}
}

@article{lecun1998gradient,
  title={{Gradient-based Learning Applied to Document Recognition}},
  author={LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
  journal={Proceedings of the IEEE},
  volume={86},
  number={11},
  pages={2278--2324},
  year={1998},
  publisher={Ieee}
}

@article{stoica2003chord,
  title={Chord: a scalable peer-to-peer lookup protocol for internet applications},
  author={Stoica, Ion and Morris, Robert and Liben-Nowell, David and Karger, David R and Kaashoek, M Frans and Dabek, Frank and Balakrishnan, Hari},
  journal={IEEE/ACM Transactions on networking},
  volume={11},
  number={1},
  pages={17--32},
  year={2003},
  publisher={IEEE}
}