Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • lts2/matrix-analysis-2025
  • magbi/matrix-analysis-2025
  • ibelhadj/matrix-analysis-2025
  • aboujaou/matrix-analysis-2025
  • wazen/matrix-analysis-2025
  • kuyumcu/matrix-analysis-2025
6 results
Show changes
Commits on Source (14)
Showing
with 10324 additions and 20 deletions
......@@ -11,4 +11,5 @@ dependencies:
- scikit-image=0.24.0
- scikit-learn=1.5.1
- scipy=1.14.1
\ No newline at end of file
- pip:
- otter-grader==6.1.0
%% Cell type:code id:e039b976 tags:
%% Cell type:code id:60552e92 tags:
``` python
# Initialize Otter
import otter
grader = otter.Notebook("Linear transforms.ipynb")
```
%% Cell type:markdown id:73bbe3f2-6e0a-463e-abc6-01213d4e5811 tags:
# Matrix Analysis 2025 - EE312
## Week 2 - Linear transforms
[N. Aspert](https://people.epfl.ch/nicolas.aspert) - [LTS2](https://lts2.epfl.ch)
The first week notebook (introduction to Python, Numpy and Matplotlib) can be used as a help.
## Important
You need to submit *individually* your answers on moodle before the next exercise session. For the theoretical questions you can either fill the notebook or write it on a separate sheet (if you are not comfortable with Markdown/TeX) and upload a scanned version.
## Objective
The end goal is to understand purely algebraic, matrix based, view of a few linear transforms. You will use those linear transform to perform some basic time-frequency analysis of signals.
%% Cell type:code id:9e522683-69ce-458f-a78c-9780e07a865e tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
```
%% Cell type:markdown id:5901baaa-4eb1-446a-8c0b-88369a9e213e tags:
## Part I - Fourier
%% Cell type:markdown id:7e81811f-e9c9-4d57-bbb9-bee71b7df722 tags:
<!-- BEGIN QUESTION -->
1. Prove that any set of orthogonal vectors $v_i \in \mathbb{C}^N, \, i=1, \ldots , M \leq N$ such that $v_i^H v_j = C \delta_{i,j}$ is linearly independent (where $C$ is some constant).
%% Cell type:markdown id:c6cd60d1 tags:otter_answer_cell
%% Cell type:markdown id:b6087a12 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:accea561-acef-429f-aa68-cc002cba19b8 tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
2. Compute $a_r = \sum_{n=0}^{N-1}e^{j2\pi r\frac{n}{N}}$, where $r$ is an integer (discuss the result depending on the value of $r$).
%% Cell type:markdown id:aed5c02d tags:otter_answer_cell
%% Cell type:markdown id:3f0ff7a0 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:b591574c-ba6d-4a15-8b42-0cb62508da73 tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
3. Let $v_k \in \mathbb{C}^N$ be such that $v_k[n] = e^{-j 2 \pi \frac{kn}{N}}$, for $k,n = 0, \ldots , N-1$.
- Prove that these vectors are mutually orthogonal, hence linearly independent.
- Compute the norm of $v_k$.
%% Cell type:markdown id:db9f3b40 tags:otter_answer_cell
%% Cell type:markdown id:d8031ee7 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:efc7a6a3-1602-4100-8ec8-d82f9e01ad86 tags:
<!-- END QUESTION -->
4. Implement the function `get_fourier_matrix` that returns a normalized Fourier matrix of size $N\times N$. Do not make use of the builtin DFT/FFT functions in `numpy` or `scipy`. Raise a `ValueError` exception if a ngetive or zero $N$ value is supplied.
%% Cell type:code id:f58a90c7-d4e3-48d9-a21b-42a4d79e2344 tags:otter_answer_cell
``` python
def get_fourier_matrix(N):
...
```
%% Cell type:code id:a6772e5f tags:
%% Cell type:code id:2283adf4 tags:
``` python
grader.check("q4")
```
%% Cell type:markdown id:a5f6b819-1e53-456a-bf67-b76258922d6e tags:
Let us now generate two test signals.
The first one $x_1(t)$ is made of four piecewise sinusoids, of different frequencies:
$$
x_1(t) = \cos(2\pi 5t), 0\le t < 2\\
x_1(t) = \cos(2\pi 10t), 2\le t < 4\\
x_1(t) = \cos(2\pi 25t), 4\le t < 6\\
x_1(t) = \cos(2\pi 50t), 6\le t < 8\\
$$
%% Cell type:code id:081e39c8-1874-4274-a7dc-59c8bdab84e4 tags:
``` python
Fs = 256 # sampling frequency
t = np.arange(0, Fs*8)/Fs
x1 = np.zeros(Fs*8)
x1[0:Fs*2] = np.cos(2*np.pi*5*t[0:Fs*2])
x1[Fs*2:Fs*4] = np.cos(2*np.pi*10*t[Fs*2:Fs*4])
x1[Fs*4:Fs*6] = np.cos(2*np.pi*25*t[Fs*4:Fs*6])
x1[Fs*6:Fs*8] = np.cos(2*np.pi*50*t[Fs*6:Fs*8])
```
%% Cell type:markdown id:b7f7475c-bfb0-4e9f-9dd6-ac9eeb5abef1 tags:
The second signal $x_2(t)$ is the sum of the same sinusoids over the complete time interval, with a scaling term s.t. the amplitude of both signals is identical.
%% Cell type:code id:8e0199b4-baf4-4376-a61c-b778aabe59f7 tags:
``` python
x2 = 0.25*(np.cos(2*np.pi*5*t) + np.cos(2*np.pi*10*t) + np.cos(2*np.pi*25*t) + np.cos(2*np.pi*50*t))
```
%% Cell type:markdown id:c52f3daf-0017-4252-b297-b5d6bb6c8151 tags:
<!-- BEGIN QUESTION -->
5.
- Display the generated signals using `plt.plot`.
- Compute their Fourier transforms using the Fourier matrix generate at the previous question.
- Display the amplitude of their Fourier spectrum. What do you observe ?
%% Cell type:markdown id:8389b07e tags:otter_answer_cell
%% Cell type:markdown id:cbde7de1 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:code id:7d4aee96-f61e-4e51-84e8-56b4e357aa0f tags:otter_answer_cell
``` python
# plot x1
...
```
%% Cell type:code id:7a504349-03a3-4efd-bc3b-8249c09453fb tags:otter_answer_cell
``` python
# plot x2
...
```
%% Cell type:code id:7bf1bf4a-04b8-43f6-8128-29647e1f964a tags:otter_answer_cell
``` python
# Compute the Fourier transform of x1 and x2
...
```
%% Cell type:code id:159e693c-4427-4a8b-9f53-42dc63bafbc9 tags:otter_answer_cell
``` python
# Plot the spectrum of x1
...
```
%% Cell type:code id:f2c3061b-900e-44d9-bb73-02c98334a818 tags:otter_answer_cell
``` python
# Plot the spectrum of x2
...
```
%% Cell type:markdown id:19060be9-6494-4b4e-9803-1a4cb6fc36ac tags:
<!-- END QUESTION -->
In order to have a better compromise between time and frequency, the input signal will be split in smaller non-overlapping blocks of length $p$, and we will perform the DFT of each block.
6. Using the `get_fourier_matrix` implemented previously, fill the `get_block_dft_matrix` function below s.t. it returns a $N\times N$ matrix that will perform the block Fourier transform when applied to an input vector. Raise a `ValueError` if $p$ does not divide $N$.
Hint: [numpy.pad](https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad) and/or [numpy.kron](https://numpy.org/doc/stable/reference/generated/numpy.kron.html) might prove useful.
%% Cell type:code id:903005b2-e249-48a0-b28b-24daef16cdb7 tags:otter_answer_cell
``` python
def get_block_dft_matrix(N, p):
...
```
%% Cell type:code id:eae601f6 tags:
%% Cell type:code id:58978e43 tags:
``` python
grader.check("q6")
```
%% Cell type:markdown id:4e894db3-b5e6-4b44-a7d1-988c59542b74 tags:
<!-- BEGIN QUESTION -->
We will now use this block Fourier transform to how the frequencies of the signal evolve through time.
7.
- Using the `reshape` and `plt.imshow` functions, display the amplitude of the result of the block Fourier transform of $x_1$ and $x_2$. Is the result improved when compared to the one observed in question 5 ?
- What is the influence of parameter $p$ ?
%% Cell type:markdown id:655fc363 tags:otter_answer_cell
%% Cell type:markdown id:6239185e tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:code id:6da33694-7bd6-4257-9a5f-9bb300cd5c69 tags:otter_answer_cell
``` python
# Compute the block DFT matrix Wb
...
```
%% Cell type:code id:e1eb36fe-3079-4feb-86df-10596293e550 tags:otter_answer_cell
``` python
# Plot the block DFT of x1
...
```
%% Cell type:code id:4de97281-75ba-49d0-bc02-2573cf9791ec tags:otter_answer_cell
``` python
# Plot the block DFT of x2
...
```
%% Cell type:markdown id:76cc3589-b7d9-44ec-98ea-07fc6550a53a tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
8. In a real-world application, would generating a $N\times N$ matrix to perform the block Fourier transform be a good way to implement it ? (Justify)
%% Cell type:markdown id:1ad05860 tags:otter_answer_cell
%% Cell type:markdown id:ff1a761a tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:87372bd1-4055-4742-ab6a-f7b6ba8750af tags:
<!-- END QUESTION -->
## Part II - Haar transform
In this part we will study another approach to study the time/frequency properties of signals.
Let us consider a vector $x\in\mathbb{R}^N$, with $N$ being even. The single-level Haar transform decomposes $x$ into two vectors $a^1$ and $d^1$ belonging to $\mathbb{R}^{\frac{N}{2}}$.
The coefficients of $a^1$ are defined as follows: $a^1_n = \frac{1}{\sqrt{2}}(x_{2n-1} + x_{2n}), n=1, ..., \frac{N}{2}$. $a^1$ is referred to as the *average coefficients vector*.
The coefficients of $d^1$ are defined as follows: $d^1_n = \frac{1}{\sqrt{2}}(x_{2n-1} - x_{2n}), n=1, ..., \frac{N}{2}$. $d^1$ is referred to as the *detail coefficients vector*.
%% Cell type:markdown id:170a3e62-8b25-482c-a8dd-91988b1d08ed tags:
<!-- BEGIN QUESTION -->
9. Let us represent the single-level Haar transform by a matrix $H_1$ s.t.
$$
H_1 x = \begin{pmatrix}a^1 \\ d^1\end{pmatrix}
$$
Prove that $H_1$ is orthonormal.
%% Cell type:markdown id:7a80f125 tags:otter_answer_cell
%% Cell type:markdown id:56fd9eda tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:92f1b78b-3017-4129-bc95-f132717bc7b9 tags:
<!-- END QUESTION -->
10. Write a function that returns the single-level Haar transform matrix $H_1$ for a given $N$. Raise a `ValueError` if $N$ is invalid.
%% Cell type:code id:5d123a1c-7f98-4edf-b896-7d773bf48e76 tags:otter_answer_cell
``` python
def get_sl_haar_matrix(N):
...
```
%% Cell type:code id:7fdfd203 tags:
%% Cell type:code id:86b9b019 tags:
``` python
grader.check("q10")
```
%% Cell type:markdown id:e2e7a4af-0f4e-4972-a051-468a12967e79 tags:
The multi-level Haar transform is defined by recursively applying the single-level transform **to the average coefficient parts**.
For instance constructing 2-level Haar transform over $N$ points start with the previously defined $H_{1,N}$ matrix of size $N\times N$ and the corresponding $\frac{N}{2}\times\frac{N}{2}$ version denoted by $H_{1,\frac{N}{2}}$.
$H_{1,N}$ can be written as
$$
\begin{pmatrix} H_{1, N}^a \\ H_{1,N}^d \end{pmatrix},
$$
where $H_{1, N}^a$ and $H_{1,N}^d$ are respectively the average and detail coefficient matrices, both of size $\frac{N}{2}\times N$.
Following these notations, the 2-level Haar transform matrix $H_{2,N}$ can be written as:
$$
\begin{pmatrix} H_{1,\frac{N}{2}}H_{1, N}^a \\ H_{1,N}^d \end{pmatrix},
$$
11. Implement a function that returns the $H_{p,N}$ matrix of size $N\times N$ that performs a $p$-level haar transform. Raise a `ValueError` if the size and the level are incompatible, or if the level is smaller than 1.
%% Cell type:code id:d73eb83b-8d4b-4bf9-9c19-b3d15ee927c1 tags:otter_answer_cell
``` python
def get_haar_matrix(N, level):
...
```
%% Cell type:code id:e6d9e517 tags:
%% Cell type:code id:c3138843 tags:
``` python
grader.check("q11")
```
%% Cell type:markdown id:918653e3-22c1-4b25-abbc-2461a6736557 tags:
<!-- BEGIN QUESTION -->
12. Prove that $H_{p,N}$ is orthonormal.
%% Cell type:markdown id:ee4201b9 tags:otter_answer_cell
%% Cell type:markdown id:02e21ab7 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:8224d668-7cdc-4175-a587-0647df59b2b4 tags:
<!-- END QUESTION -->
### Haar transform visualization
In order to make the visualization of the Haar decomposition easy, we provide you the `plot_haar_coeffs` function that will display the average and detail coefficients of the different levels.
The function takes 2 arguments:
- the input signal
- the number of levels
%% Cell type:markdown id:b6cac5b0-a173-499c-ad89-9e4b82166c7a tags:
<!-- BEGIN QUESTION -->
13. Display the Haar transform of $x1$ and $x2$.
%% Cell type:code id:5ca2ec21-222e-430c-a7bd-d2af54e2de47 tags:
``` python
from display_helper import plot_haar_coeffs
```
%% Cell type:code id:6a946638-18dc-44fa-8ffc-0b44a3f653e1 tags:otter_answer_cell
``` python
# display the decomposition of x1
...
```
%% Cell type:code id:b01b9267-9609-474e-b5e0-8b7adb687164 tags:otter_answer_cell
``` python
# display the decomposition of x2
...
```
%% Cell type:markdown id:81e23ac6-de1a-4cb4-98f2-89545052f9f3 tags:
<!-- END QUESTION -->
## Part III - Denoising
We will now use the different transforms defined in part I and II to perform denoising.
Let us create a noisy signal for this purpose.
%% Cell type:code id:e5583ca2-13ea-49f8-baf6-4d6a223f3b2e tags:
``` python
angle1 = np.linspace(0, 5*np.pi/2, 300)
wave1 = np.sin(angle1)
angle2 = np.linspace(0, 3*np.pi/2, 300)
wave2 = np.sin(angle2)
angle3 = np.linspace(np.pi/2, 2*np.pi, 424)
wave3 = np.sin(angle3)
wave = np.append(wave1, wave2)
wave = np.append(wave, wave3)
wave_noisy = wave + 0.2*np.random.normal(0, 1, 1024)
```
%% Cell type:code id:d3278fc1-e814-47b9-83f0-61f4fad8d4d7 tags:
``` python
plt.plot(wave_noisy, 'r')
plt.plot(wave)
```
%% Cell type:markdown id:33489d2d-b038-4896-87e7-0af6568ad702 tags:
The noise is usually located in the higher frequencies. However, the signal we created is a bit special as it has two discontinuities which also generate high frequencies components (remember the Fourier transform of a rectangle function is a sinc).
%% Cell type:markdown id:fbd9ce45-7214-4ca7-a5e3-cf0c340458a3 tags:
<!-- BEGIN QUESTION -->
14. Implement a function `denoise_signal` that perform denoising of the input signal by using a supplied orthonormal transform matrix, and by setting the transformed coefficients having an amplitude smaller than a given threshold to 0. You might want to use the [numpy.where](https://numpy.org/doc/stable/reference/generated/numpy.where.html) function for this. When denoising using the Haar transform, you can preform the thresholding only on the detail coefficients. Implement the function `denoise_signal_haar` that performs this operation.
NB: The result returned should be real, in order to be displayed.
%% Cell type:code id:cf7270a7-de1d-4c24-913c-916479ee8ab5 tags:otter_answer_cell
``` python
def denoise_signal(W, x, threshold=0.1):
"""
W: NxN input orthonormal matrix (Fourier, block-Fourier or Haar)
x: input signal (of length N)
"""
...
```
%% Cell type:code id:c029ab19-11a5-4bc9-b348-31bf8ca07bca tags:otter_answer_cell
``` python
def denoise_signal_haar(W, x, threshold=0.1, detail_start_index=256):
"""
W: NxN input orthonormal matrix (Fourier, block-Fourier or Haar)
x: input signal (of length N)
detail_start_index: thresholding is performed on x[detail_start_index:]
"""
...
```
%% Cell type:code id:1b47fbc5-070b-49c4-a616-d8e753adede1 tags:otter_answer_cell
``` python
# Perform denoising with the full Fourier transform and display the result.
# Make sure you choose a good threshold
...
```
%% Cell type:code id:d06fa927-ca94-4387-b987-a4e3ffeabeb2 tags:otter_answer_cell
``` python
# Perform denoising with the block Fourier transform and display the result
# Make sure you choose a good threshold and block size
...
```
%% Cell type:code id:98e6e4a6-a289-4552-b5a9-27f40c40cb40 tags:otter_answer_cell
``` python
# Perform denoising with the Haar transform and display the result
# Make sure you choose a good threshold and an appropriate number of levels
...
```
%% Cell type:code id:4ab6578e tags:
%% Cell type:code id:d5cb5707 tags:
``` python
grader.check("q14")
```
%% Cell type:markdown id:e6b05f2f-34a1-4689-82ef-c3be92c842ba tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
15. Compare the three denoising methods (Fourier, block Fourier and Haar). Which one performs better (in terms of noise removal but also in terms of discontinuity preservation) ? Was that expected (justify) ?
%% Cell type:markdown id:9a63dd83 tags:otter_answer_cell
%% Cell type:markdown id:a999fadd tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:43d32956 tags:
%% Cell type:markdown id:e705a9ec tags:
<!-- END QUESTION -->
......
This diff is collapsed.
exercises/week03/images/pocs.png

76.9 KiB

This diff is collapsed.
%% Cell type:code id:044b8034 tags:
``` python
# Initialize Otter
import otter
grader = otter.Notebook("Linear systems - Poisson equation.ipynb")
```
%% Cell type:markdown id:d133bce9-d159-4b1d-a25f-69bed8da493a tags:
# Matrix Analysis 2025 - EE312
## Week 5 - Discrete Poisson equation
[LTS2](https://lts2.epfl.ch)
### Objectives
Apply your knowledge about linear systems to Poisson equation resolution.
%% Cell type:markdown id:654ad4ee-c060-4bc3-b218-3a6709952750 tags:
## Poisson equation
Let $u,v \in \mathbb{R}^n$ represent a physical quantity $f$ and $g: \mathbb{R} \mapsto \mathbb{R}$ sampled at $n$ equi-spaced locations $x_i$, i.e $u_i = f(x_i)$, $v_i = g(x_i)$.
Let us assume that the underlying continuous object satisfies the Poisson equation: $\frac{d^2}{dx^2} f (x)= g(x)$ with constraints $f(x_j) = y_j$ for a subset of $m$ locations $j \in \{i_1, \ldots i_m \}$.
We will assume that **all the $i_k$ are distinct**.
This equation governs a number of physical principles, e.g. gravity, fluid mechanics and electrostatics. In the latter we have $\Delta \varphi = -\frac{\rho}{\varepsilon}$, where $\Delta$ is the Laplacian operator $(\frac{d^2}{dx^2} + \frac{d^2}{dy^2} + \frac{d^2}{dz^2})$, $\varphi$ is the electric potential, $\rho$ the density of electric charges and $\varepsilon$ the electric permittivity.
---
%% Cell type:markdown id:06ac5cfa-62ef-4477-a957-e240ddeb85d8 tags:
### 1D case
%% Cell type:code id:7f3cb74d-72f0-460b-a978-a47f87de8557 tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
```
%% Cell type:markdown id:9fd89d0b-50df-4711-a32b-ec1026e6b122 tags:
<!-- BEGIN QUESTION -->
1. Write down a matrix equation for the discrete version of $\frac{d^2}{dx^2} f (x)= g(x)$, using the finite-difference approximation of the derivative $\frac{d^2}{dx^2} f = f(x_{k+1}) - 2f(x_k) +f(x_{k-1})$. For the boundary conditions we will make the assumption that $x_{-1}=x_0$ and $x_{n-1}=x_n$ (also referred to as Dirichlet boundary conditions)
What is the rank of the corresponding matrix $D$ ?
%% Cell type:markdown id:d1f8bd46 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:aed76fe2-8cb5-4b28-bd3b-fa0bea113a46 tags:
<!-- END QUESTION -->
<Your answers here>
%% Cell type:markdown id:cceac118-c43d-4782-9f7e-4392e5ecc451 tags:
2. Implement a function that creates the $D$ matrix (also called Laplacian). The [diag](https://numpy.org/doc/stable/reference/generated/numpy.diag.html) function in numpy might be useful.
%% Cell type:code id:d41105d8-6933-4ef8-b2f0-c6ac053e1f55 tags:otter_answer_cell
``` python
def lapl_matrix(N):
...
```
%% Cell type:code id:756d9370 tags:
``` python
grader.check("q2")
```
%% Cell type:markdown id:4cea41dc-6f12-42f2-8644-b51e4918504d tags:
<!-- BEGIN QUESTION -->
3. Write down a matrix equation for the discrete version of $f(x_j) = y_j$. What is the rank of the corresponding matrix $B$ ?
%% Cell type:markdown id:fc67bfcb tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:418bc83f-7d46-41c2-8a7e-df892857320c tags:
<!-- END QUESTION -->
4. Implement a function that creates matrix $B$
%% Cell type:code id:1d294eda-7edc-42c2-9640-13bec779bd48 tags:otter_answer_cell
``` python
def b_matrix(N, idx_list): # idx_list is a list of valid indices, e.g. N=5, idx_list=[1,3]
...
```
%% Cell type:code id:d592616d tags:
``` python
grader.check("q4")
```
%% Cell type:markdown id:b77f215e-e4d0-4976-9ed6-7ee210c689a6 tags:
<!-- BEGIN QUESTION -->
3. Write down a matrix equation for the full problem (Hint: Consider the matrix $C=\begin{pmatrix}D\\B\end{pmatrix}$). Discuss the rank of the matrix and deduce a way to numerically solve the linear system. Implement a function that returns matrix $C$.
%% Cell type:markdown id:70f5637a tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:code id:2eaf5a8c-b83a-4f53-9c4e-6192bf4e6fa4 tags:otter_answer_cell
``` python
def c_matrix(D, B):
...
```
%% Cell type:code id:d77116d4 tags:
``` python
grader.check("q4")
```
%% Cell type:markdown id:10a3d136-f5f3-4c1b-9c0a-ece58f891dfe tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
5. What explicit formula can you use to compute the pseudo-inverse of $C$ (justify)?
%% Cell type:markdown id:ce8aa19a tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:3726eb03-0c82-4aed-b179-77ff947583c3 tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
6. Implement a function that return the solution of the problem. You can either use the formula above (you may then use the [linalg.inv](https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html) or compute the pseudo-inverse using [linalg.pinv](https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html).
%% Cell type:code id:79f8c6d1-7b92-48b6-bb90-e888aaa41243 tags:otter_answer_cell
``` python
# v is a vector of size N
# u is a vector of size len(idx_list)
def solve_poisson(N, v, idx_list, u):
...
```
%% Cell type:markdown id:ff6184e1-e308-47d1-8b72-ab4559b48adb tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
7. Let us now consider the solutions of the particular case $g(x) = 0, \forall x\in\mathbb{R}$. What are the analytical solutions that would solve Poisson equation ?
%% Cell type:markdown id:53e63141 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:4a33db39-077d-4775-a55d-ae5bd7400b23 tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
Let us verify that our implementation of the solution works with a small example. Fill the values for $u$ s.t. they belong to the solution space.
%% Cell type:code id:96381701-e737-41c1-8642-fa1a5c13924c tags:otter_answer_cell
``` python
N = 50
v = np.zeros(N)
idx_list = [10, 20, 30, 40]
u = ...
sol = solve_poisson(N, v, idx_list, u)
plt.plot(sol) # plot the result
```
%% Cell type:markdown id:04e6fc55-6c8a-4dfa-8ca0-9b45ed2f157c tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
9. Are the results conform to what we expected ? What happens near the boundaries ?
%% Cell type:markdown id:e1c9c95f tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:ecf46b87-accd-4043-8ab6-06835830699b tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
10. Let us use a step function for $f$ and try to solve the system
%% Cell type:code id:d81b4501-b2a5-4412-a266-d04ffa8dd2c7 tags:
``` python
idx_list = [10, 20, 30, 40]
u2 = [1, 1, -1, -1]
sol2 = solve_poisson(N, v, idx_list, u2)
plt.scatter(idx_list, u2, marker='+', color='r')
plt.plot(sol2)
```
%% Cell type:markdown id:4918d31c-40a2-4df3-88ec-d18a80e879e7 tags:
What do you observe and what is the reason for that ?
%% Cell type:markdown id:1482c041 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:markdown id:b520b2c6-7c84-4c3e-be16-8eb866648a97 tags:
<!-- END QUESTION -->
<!-- BEGIN QUESTION -->
11. Let us now consider the application of the Poisson equation to electrostatic. Knowing a distribution of electric charges, we can solve it to compute the electric potential. The distribution of electric charges will be very simple, consisting of two punctual charges
%% Cell type:code id:96932aa1-74aa-4f4e-bbf5-df0f0d85c47c tags:
``` python
N = 50
v3 = np.zeros(N)
v3[10] = 1
v3[40] = 1
plt.plot(v3)
```
%% Cell type:markdown id:42861911-53e1-4cb3-8dc7-aa617c01a7e8 tags:
- What are the analytical solutions for this problem ? (remember the discrete derivative of a step function is a Dirac function, i.e. 0 everywhere except at one point where it is 1).
- Plot the analytical solution
- Compute and plot the numerical solution
- What do you observe ?
%% Cell type:markdown id:1b19e6d2 tags:otter_answer_cell
_Type your answer here, replacing this text._
%% Cell type:code id:f42fc23b-c412-4791-b5b6-bef54fa3bab3 tags:otter_answer_cell
``` python
...
```
%% Cell type:code id:f2f9bd66-067e-4590-8088-87b7969621bb tags:otter_answer_cell
``` python
# Plot analytical solution
...
```
%% Cell type:code id:22eae7ab-4c91-4000-b123-7105cc4c023a tags:otter_answer_cell
``` python
idx_list = [10, 20, 30, 40]
u3 = [1, 1, 1, 1]
sol3 = solve_poisson(N, v3, idx_list, u3)
plt.scatter(idx_list, u3, marker='+', color='r')
plt.plot(sol3)
```
%% Cell type:code id:b0310f39-9bbf-4518-be7d-af0e3f6724a7 tags:otter_answer_cell
``` python
# check the 2nd derivative of the solution computed
...
```
%% Cell type:markdown id:c0f0755f tags:
<!-- END QUESTION -->
This diff is collapsed.
File added
This diff is collapsed.
exercises/week07/images/RBF_NN.png

47 KiB

This diff is collapsed.
This diff is collapsed.
solutions/week03/images/pocs.png

76.9 KiB

This diff is collapsed.
This diff is collapsed.
This diff is collapsed.