Newer
Older
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"# Initialize Otter\n",
"import otter\n",
"grader = otter.Notebook(\"Linear transforms.ipynb\")"
]
},
{
"cell_type": "markdown",
"id": "73bbe3f2-6e0a-463e-abc6-01213d4e5811",
"metadata": {
"tags": []
},
"source": [
"# Matrix Analysis 2025 - EE312\n",
"## Week 2 - Linear transforms\n",
"[N. Aspert](https://people.epfl.ch/nicolas.aspert) - [LTS2](https://lts2.epfl.ch)\n",
"\n",
"The first week notebook (introduction to Python, Numpy and Matplotlib) can be used as a help.\n",
"\n",
"## Objective\n",
"\n",
"The end goal is to understand purely algebraic, matrix based, view of a few linear transforms. You will use those linear transform to perform some basic time-frequency analysis of signals."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9e522683-69ce-458f-a78c-9780e07a865e",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"id": "5901baaa-4eb1-446a-8c0b-88369a9e213e",
"metadata": {},
"source": [
"## Part I - Fourier"
]
},
{
"cell_type": "markdown",
"id": "7e81811f-e9c9-4d57-bbb9-bee71b7df722",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"1. Prove that any set of orthogonal vectors $v_i \\in \\mathbb{C}^N, \\, i=1, \\ldots , M \\leq N$ such that $v_i^H v_j = C \\delta_{i,j}$ is linearly independent (where $C$ is some constant)."
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
"id": "accea561-acef-429f-aa68-cc002cba19b8",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"<!-- BEGIN QUESTION -->\n",
"\n",
"2. Compute $a_r = \\sum_{n=0}^{N-1}e^{j2\\pi r\\frac{n}{N}}$, where $r$ is an integer (discuss the result depending on the value of $r$)."
]
},
{
"cell_type": "markdown",
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
"id": "b591574c-ba6d-4a15-8b42-0cb62508da73",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"<!-- BEGIN QUESTION -->\n",
"\n",
"3. Let $v_k \\in \\mathbb{C}^N$ be such that $v_k[n] = e^{-j 2 \\pi \\frac{kn}{N}}$, for $k,n = 0, \\ldots , N-1$. \n",
"- Prove that these vectors are mutually orthogonal, hence linearly independent. \n",
"- Compute the norm of $v_k$."
]
},
{
"cell_type": "markdown",
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
"id": "efc7a6a3-1602-4100-8ec8-d82f9e01ad86",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"4. Implement the function `get_fourier_matrix` that returns a normalized Fourier matrix of size $N\\times N$. Do not make use of the builtin DFT/FFT functions in `numpy` or `scipy`. Raise a `ValueError` exception if a ngetive or zero $N$ value is supplied."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f58a90c7-d4e3-48d9-a21b-42a4d79e2344",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"def get_fourier_matrix(N):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q4\")"
]
},
{
"cell_type": "markdown",
"id": "a5f6b819-1e53-456a-bf67-b76258922d6e",
"metadata": {},
"source": [
"Let us now generate two test signals. \n",
"\n",
"The first one $x_1(t)$ is made of four piecewise sinusoids, of different frequencies:\n",
"\n",
"$$\n",
"x_1(t) = \\cos(2\\pi 5t), 0\\le t < 2\\\\\n",
"x_1(t) = \\cos(2\\pi 10t), 2\\le t < 4\\\\\n",
"x_1(t) = \\cos(2\\pi 25t), 4\\le t < 6\\\\\n",
"x_1(t) = \\cos(2\\pi 50t), 6\\le t < 8\\\\\n",
"$$\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "081e39c8-1874-4274-a7dc-59c8bdab84e4",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"Fs = 256 # sampling frequency\n",
"t = np.arange(0, Fs*8)/Fs\n",
"x1 = np.zeros(Fs*8)\n",
"x1[0:Fs*2] = np.cos(2*np.pi*5*t[0:Fs*2])\n",
"x1[Fs*2:Fs*4] = np.cos(2*np.pi*10*t[Fs*2:Fs*4])\n",
"x1[Fs*4:Fs*6] = np.cos(2*np.pi*25*t[Fs*4:Fs*6])\n",
"x1[Fs*6:Fs*8] = np.cos(2*np.pi*50*t[Fs*6:Fs*8])"
]
},
{
"cell_type": "markdown",
"id": "b7f7475c-bfb0-4e9f-9dd6-ac9eeb5abef1",
"metadata": {},
"source": [
"The second signal $x_2(t)$ is the sum of the same sinusoids over the complete time interval, with a scaling term s.t. the amplitude of both signals is identical."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8e0199b4-baf4-4376-a61c-b778aabe59f7",
"metadata": {},
"outputs": [],
"source": [
"x2 = 0.25*(np.cos(2*np.pi*5*t) + np.cos(2*np.pi*10*t) + np.cos(2*np.pi*25*t) + np.cos(2*np.pi*50*t))"
]
},
{
"cell_type": "markdown",
"id": "c52f3daf-0017-4252-b297-b5d6bb6c8151",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"5. \n",
"- Display the generated signals using `plt.plot`. \n",
"- Compute their Fourier transforms using the Fourier matrix generate at the previous question.\n",
"- Display the amplitude of their Fourier spectrum. What do you observe ? "
]
},
{
"cell_type": "markdown",
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7d4aee96-f61e-4e51-84e8-56b4e357aa0f",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# plot x1\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7a504349-03a3-4efd-bc3b-8249c09453fb",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# plot x2\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7bf1bf4a-04b8-43f6-8128-29647e1f964a",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Compute the Fourier transform of x1 and x2\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "159e693c-4427-4a8b-9f53-42dc63bafbc9",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Plot the spectrum of x1\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f2c3061b-900e-44d9-bb73-02c98334a818",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Plot the spectrum of x2\n",
"..."
]
},
{
"cell_type": "markdown",
"id": "19060be9-6494-4b4e-9803-1a4cb6fc36ac",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"In order to have a better compromise between time and frequency, the input signal will be split in smaller non-overlapping blocks of length $p$, and we will perform the DFT of each block.\n",
"\n",
"6. Using the `get_fourier_matrix` implemented previously, fill the `get_block_dft_matrix` function below s.t. it returns a $N\\times N$ matrix that will perform the block Fourier transform when applied to an input vector. Raise a `ValueError` if $p$ does not divide $N$.\n",
"\n",
"Hint: [numpy.pad](https://numpy.org/doc/stable/reference/generated/numpy.pad.html#numpy.pad) and/or [numpy.kron](https://numpy.org/doc/stable/reference/generated/numpy.kron.html) might prove useful."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "903005b2-e249-48a0-b28b-24daef16cdb7",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"def get_block_dft_matrix(N, p):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q6\")"
]
},
{
"cell_type": "markdown",
"id": "4e894db3-b5e6-4b44-a7d1-988c59542b74",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"We will now use this block Fourier transform to how the frequencies of the signal evolve through time.\n",
"\n",
"7. \n",
"- Using the `reshape` and `plt.imshow` functions, display the amplitude of the result of the block Fourier transform of $x_1$ and $x_2$. Is the result improved when compared to the one observed in question 5 ?\n",
"- What is the influence of parameter $p$ ? \n"
]
},
{
"cell_type": "markdown",
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6da33694-7bd6-4257-9a5f-9bb300cd5c69",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Compute the block DFT matrix Wb\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e1eb36fe-3079-4feb-86df-10596293e550",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Plot the block DFT of x1\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4de97281-75ba-49d0-bc02-2573cf9791ec",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Plot the block DFT of x2\n",
"..."
]
},
{
"cell_type": "markdown",
"id": "76cc3589-b7d9-44ec-98ea-07fc6550a53a",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"<!-- BEGIN QUESTION -->\n",
"\n",
"8. In a real-world application, would generating a $N\\times N$ matrix to perform the block Fourier transform be a good way to implement it ? (Justify)"
]
},
{
"cell_type": "markdown",
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
"id": "87372bd1-4055-4742-ab6a-f7b6ba8750af",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"## Part II - Haar transform\n",
"\n",
"In this part we will study another approach to study the time/frequency properties of signals. \n",
"\n",
"Let us consider a vector $x\\in\\mathbb{R}^N$, with $N$ being even. The single-level Haar transform decomposes $x$ into two vectors $a^1$ and $d^1$ belonging to $\\mathbb{R}^{\\frac{N}{2}}$. \n",
"\n",
"The coefficients of $a^1$ are defined as follows: $a^1_n = \\frac{1}{\\sqrt{2}}(x_{2n-1} + x_{2n}), n=1, ..., \\frac{N}{2}$. $a^1$ is referred to as the *average coefficients vector*.\n",
"\n",
"The coefficients of $d^1$ are defined as follows: $d^1_n = \\frac{1}{\\sqrt{2}}(x_{2n-1} - x_{2n}), n=1, ..., \\frac{N}{2}$. $d^1$ is referred to as the *detail coefficients vector*.\n"
]
},
{
"cell_type": "markdown",
"id": "170a3e62-8b25-482c-a8dd-91988b1d08ed",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"9. Let us represent the single-level Haar transform by a matrix $H_1$ s.t. \n",
"$$\n",
"H_1 x = \\begin{pmatrix}a^1 \\\\ d^1\\end{pmatrix}\n",
"$$\n",
"Prove that $H_1$ is orthonormal."
]
},
{
"cell_type": "markdown",
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
"id": "92f1b78b-3017-4129-bc95-f132717bc7b9",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"10. Write a function that returns the single-level Haar transform matrix $H_1$ for a given $N$. Raise a `ValueError` if $N$ is invalid."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5d123a1c-7f98-4edf-b896-7d773bf48e76",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"def get_sl_haar_matrix(N):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q10\")"
]
},
{
"cell_type": "markdown",
"id": "e2e7a4af-0f4e-4972-a051-468a12967e79",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"The multi-level Haar transform is defined by recursively applying the single-level transform **to the average coefficient parts**. \n",
"\n",
"For instance constructing 2-level Haar transform over $N$ points start with the previously defined $H_{1,N}$ matrix of size $N\\times N$ and the corresponding $\\frac{N}{2}\\times\\frac{N}{2}$ version denoted by $H_{1,\\frac{N}{2}}$. \n",
"\n",
"$H_{1,N}$ can be written as\n",
"$$\n",
"\\begin{pmatrix} H_{1, N}^a \\\\ H_{1,N}^d \\end{pmatrix},\n",
"$$\n",
"where $H_{1, N}^a$ and $H_{1,N}^d$ are respectively the average and detail coefficient matrices, both of size $\\frac{N}{2}\\times N$.\n",
"\n",
"Following these notations, the 2-level Haar transform matrix $H_{2,N}$ can be written as:\n",
"$$\n",
"\\begin{pmatrix} H_{1,\\frac{N}{2}}H_{1, N}^a \\\\ H_{1,N}^d \\end{pmatrix},\n",
"$$\n",
"\n",
"11. Implement a function that returns the $H_{p,N}$ matrix of size $N\\times N$ that performs a $p$-level haar transform. Raise a `ValueError` if the size and the level are incompatible, or if the level is smaller than 1."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d73eb83b-8d4b-4bf9-9c19-b3d15ee927c1",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"def get_haar_matrix(N, level):\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q11\")"
]
},
{
"cell_type": "markdown",
"id": "918653e3-22c1-4b25-abbc-2461a6736557",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"12. Prove that $H_{p,N}$ is orthonormal."
]
},
{
"cell_type": "markdown",
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
"id": "8224d668-7cdc-4175-a587-0647df59b2b4",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"### Haar transform visualization\n",
"\n",
"In order to make the visualization of the Haar decomposition easy, we provide you the `plot_haar_coeffs` function that will display the average and detail coefficients of the different levels. \n",
"\n",
"The function takes 2 arguments:\n",
"- the input signal\n",
"- the number of levels\n"
]
},
{
"cell_type": "markdown",
"id": "b6cac5b0-a173-499c-ad89-9e4b82166c7a",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"13. Display the Haar transform of $x1$ and $x2$."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5ca2ec21-222e-430c-a7bd-d2af54e2de47",
"metadata": {
"deletable": false,
"editable": false,
"tags": []
},
"outputs": [],
"source": [
"from display_helper import plot_haar_coeffs"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6a946638-18dc-44fa-8ffc-0b44a3f653e1",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# display the decomposition of x1\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b01b9267-9609-474e-b5e0-8b7adb687164",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# display the decomposition of x2\n",
"..."
]
},
{
"cell_type": "markdown",
"id": "81e23ac6-de1a-4cb4-98f2-89545052f9f3",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"## Part III - Denoising\n",
"\n",
"We will now use the different transforms defined in part I and II to perform denoising.\n",
"Let us create a noisy signal for this purpose."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5583ca2-13ea-49f8-baf6-4d6a223f3b2e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"angle1 = np.linspace(0, 5*np.pi/2, 300)\n",
"wave1 = np.sin(angle1)\n",
"angle2 = np.linspace(0, 3*np.pi/2, 300)\n",
"wave2 = np.sin(angle2)\n",
"angle3 = np.linspace(np.pi/2, 2*np.pi, 424)\n",
"wave3 = np.sin(angle3)\n",
"wave = np.append(wave1, wave2)\n",
"wave = np.append(wave, wave3)\n",
"wave_noisy = wave + 0.2*np.random.normal(0, 1, 1024)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d3278fc1-e814-47b9-83f0-61f4fad8d4d7",
"metadata": {},
"outputs": [],
"source": [
"plt.plot(wave_noisy, 'r')\n",
"plt.plot(wave)"
]
},
{
"cell_type": "markdown",
"id": "33489d2d-b038-4896-87e7-0af6568ad702",
"metadata": {},
"source": [
"The noise is usually located in the higher frequencies. However, the signal we created is a bit special as it has two discontinuities which also generate high frequencies components (remember the Fourier transform of a rectangle function is a sinc). "
]
},
{
"cell_type": "markdown",
"id": "fbd9ce45-7214-4ca7-a5e3-cf0c340458a3",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"14. Implement a function `denoise_signal` that perform denoising of the input signal by using a supplied orthonormal transform matrix, and by setting the transformed coefficients having an amplitude smaller than a given threshold to 0. You might want to use the [numpy.where](https://numpy.org/doc/stable/reference/generated/numpy.where.html) function for this. When denoising using the Haar transform, you can preform the thresholding only on the detail coefficients. Implement the function `denoise_signal_haar` that performs this operation.\n",
"\n",
"NB: The result returned should be real, in order to be displayed. "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf7270a7-de1d-4c24-913c-916479ee8ab5",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"def denoise_signal(W, x, threshold=0.1):\n",
" \"\"\"\n",
" W: NxN input orthonormal matrix (Fourier, block-Fourier or Haar)\n",
" x: input signal (of length N)\n",
" \"\"\"\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c029ab19-11a5-4bc9-b348-31bf8ca07bca",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"def denoise_signal_haar(W, x, threshold=0.1, detail_start_index=256):\n",
" \"\"\"\n",
" W: NxN input orthonormal matrix (Fourier, block-Fourier or Haar)\n",
" x: input signal (of length N)\n",
" detail_start_index: thresholding is performed on x[detail_start_index:]\n",
" \"\"\"\n",
" ..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b47fbc5-070b-49c4-a616-d8e753adede1",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Perform denoising with the full Fourier transform and display the result. \n",
"# Make sure you choose a good threshold\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d06fa927-ca94-4387-b987-a4e3ffeabeb2",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Perform denoising with the block Fourier transform and display the result\n",
"# Make sure you choose a good threshold and block size\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "98e6e4a6-a289-4552-b5a9-27f40c40cb40",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"outputs": [],
"source": [
"# Perform denoising with the Haar transform and display the result\n",
"# Make sure you choose a good threshold and an appropriate number of levels\n",
"..."
]
},
{
"cell_type": "code",
"execution_count": null,
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"grader.check(\"q14\")"
]
},
{
"cell_type": "markdown",
"id": "e6b05f2f-34a1-4689-82ef-c3be92c842ba",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"<!-- BEGIN QUESTION -->\n",
"\n",
"15. Compare the three denoising methods (Fourier, block Fourier and Haar). Which one performs better (in terms of noise removal but also in terms of discontinuity preservation) ? Was that expected (justify) ?"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": [
"otter_answer_cell"
]
},
"source": [
"_Type your answer here, replacing this text._"
]
},
{
"cell_type": "markdown",
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- END QUESTION -->\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
},
"otter": {
"OK_FORMAT": true,
"tests": {
"q10": {
"name": "q10",
"points": 4,
"suites": [
{
"cases": [
{
"code": ">>> with np.testing.assert_raises(ValueError):\n... get_sl_haar_matrix(-1)\n>>> with np.testing.assert_raises(ValueError):\n... get_sl_haar_matrix(0)\n>>> with np.testing.assert_raises(ValueError):\n... get_sl_haar_matrix(3)\n",
"failure_message": "Did you forget to validate the input size before performing the computation ?",
"hidden": false,
"locked": false,
"points": 1,
"success_message": "Good, you properly validated size before computing the result"
},
{
"code": ">>> np.testing.assert_array_almost_equal(get_sl_haar_matrix(2), np.array([[1, 1], [1, -1]]) / np.sqrt(2))\n>>> np.testing.assert_array_almost_equal(get_sl_haar_matrix(4), np.array([[1, 1, 0, 0], [0, 0, 1, 1], [1, -1, 0, 0], [0, 0, 1, -1]]) / np.sqrt(2))\n",
"failure_message": "Results seem incorrect, check your implementation",
"hidden": false,
"locked": false,
"points": 2,
"success_message": "Good, results look correct"
},
{
"code": ">>> H = get_sl_haar_matrix(16)\n>>> np.testing.assert_array_almost_equal(H @ H.T, np.eye(16))\n>>> np.testing.assert_array_almost_equal(H.T @ H, np.eye(16))\n",
"failure_message": "Results seem incorrect, check your implementation",
"hidden": false,
"locked": false,
"points": 1,
"success_message": "Good, computed matrix is orthogonal"
}
],
"scored": true,
"setup": "",
"teardown": "",
"type": "doctest"
}
]
},
"q11": {
"name": "q11",
"points": 4,
"suites": [
{
"cases": [
{