\section{Bipolar junction transistor (BJT)} \begin{figure}[h] \centering \caption{BJT} \includegraphics[width=.75\textwidth]{imgs/bjt_terminals_and_functioning.png} \end{figure} But what's going on? If $V_{BE}>0$ injection of electrons from E to B, of holes from B to E. If $V_{BC}<0$ extraction of electrons from B to C, of holes from C to B. \subsection{BJT characteristics} \begin{align} I_E & = -I_C-I_B \\ \begin{split} \beta &= \frac{I_C}{I_B} =\frac{n_{pB_0}\frac{D_n}{W_B}}{p_{nE_0}\frac{D_p}{W_E}}\\ &= \frac{N_{dE} D_n W_E}{N_{aB} D_p W_B} \end{split} \end{align} Collector current, focus on electron diffusion in base: \begin{align} n_{pB}(0) & =n_{pB_0}e^{\frac{qV_{BE}}{kT}} \\ n_{pB}(x) & =n_{pB}(0)(1-\frac{x}{W_B}) \\[1em] \begin{split} J_{nB} &= qD_n\frac{\mathrm{d} n_{pB}}{\mathrm{d}x}\\ &= -qD_n\frac{n_{pB}(0)}{W_B} \end{split} \\ \begin{split} I_C &=-J_{nB}A_E\\ &=qA_E\frac{E_n}{W_B}n_{pB_0}e^{\frac{qV_{BE}}{kT}} \end{split} \\ I_C & = I_Se^{\frac{qV_{BE}}{kT}} \end{align} Base current, focus on hole injection and recombination in emitter: \begin{align} p_{nE}(-x_{BE}) & =p_{nE_0}e^{-\frac{qV_{BE}}{kT}} \\ p_{nE}(-W_E-x_{BE}) & =p_{nE_0} \\ p_{nE}(x) & =\left[ p_{nE}(-x_{BE}-p_{nE_0}) \right]\left( 1+\frac{x+x_{BE}}{W_E} \right)+P_{nE_0} & \leftarrow \text{Hole Profile} \\[1em] \begin{split} J_{pE}&=-qD_p\frac{\mathrm{d}p_{nE}}{\mathrm{d}x}\\ &=-qD_p\frac{p_{nE(-x_{BE})-p_{nE_0}}}{W_E} \end{split} \\ \begin{split} I_B&=-J_{pE}A_E\\ &=qA_E\frac{D_p}{W_E}p_{nE_0}\left( e^{\frac{qV_{VE}}{kT}} -1 \right) \end{split} \\ I_B & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\ I_B\approx\frac{I_C}{\beta} \end{align} \subsubsection{`Good' transistor} We want collector and emitter current to be identical and so we define $\alpha$ as measurement of how close we are: \begin{align} I_C & =-\alpha I_E \\ & =\alpha\left(I_B+I_C\right) \\ & =\frac{\alpha}{1-\alpha}I_B \\ & =\beta I_B \\ \beta & =\frac{\alpha}{1-\alpha} \end{align} \subsection{Summary forward active} \begin{align} I_C & = I_Se^{\frac{qV_{BE}}{kT}} \\ I_B & = \frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}}-1\right) \\ I_E & = -I_C-I_B \end{align} For reverse, it is the same but $\beta_R\approx [0.1,5]\ll\beta$. \subsection{Summary cut-off} \begin{alignat}{2} I_{B1} & = -\frac{I_S}{\beta} & & =-I_E \\ I_{B2} & =-\frac{I_S}{\beta_R} & & =-I_C \end{alignat} \subsection{Summary saturation} \begin{align} I_C & =I_S\left(e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}}\right)-\frac{I_S}{\beta_R}\left( e^\frac{qV_{BC}}{kT} - 1 \right) \\ I_B & =\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)+\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right) \\ I_E & =\frac{I_S}{\beta}\left(e^{\frac{qV_{BE}}{kT}} - 1\right) - I_S\left( e^{\frac{qV_{BE}}{kT}} -e^{\frac{qV_{BC}}{kT}} \right) \end{align} \subsection{Ebers-Moll model} \begin{center} \begin{circuitikz} \draw (0,0) node[left] {B} to [short,*-] ++(1,0) to [Do,l=$\frac{I_S}{\beta_R}\left( e^{\frac{qV_{BC}}{kT}} -1 \right)$] ++(0,2) to [short] ++(2,0) to [I,l=$I_S\left( e^{\frac{qV_{BE}}{kT}} - e^{\frac{qV_{BC}}{kT}} \right)$,i=$$] ++(0,-4) to [short] ++(-1,0); \draw (1,0) to [Do,l_=$\frac{I_S}{\beta}\left( e^{\frac{qV_{BE}}{kT}}-1 \right)$] ++(0,-2) to [short] ++(1,0) to [short,-*] ++(0,-1) node [below] {E}; \draw (2,2) to [short,-*] ++(0,1) node[above] {C}; \end{circuitikz} \end{center} \subsection{Early effect} With increasing $V_{CE}$, the depletion region inceases. To not have to deal with that, we introduce a correction factor \begin{equation} I_C = I_S e^{\frac{V_{BE}}{V_{th}}}\left(1+\frac{V_{CE}}{V_A}\right) \end{equation} \subsection{Transfer characteristics} We evaluate the transistor at its operating point ($OP$ or $Q=(V_{BE},V_{CE})$) to find the transconductance $g_m$. \begin{equation} \label{label:eq:bjt_transconductance} g_m = \left. \frac{\partial i_C}{\partial V_{BE}} \right|_{OP} = \frac{qI_C}{kT} \end{equation}