\section{Carrier transport} \subsection{Fermi distribution} \label{label:sec:fermi} Fermions are weird particles, see QM II. Not sure if needed for this course, but heres the probability distribution: \begin{equation} f(E) = \frac{1}{1+e^{(E-E_F)/kT}} \end{equation} Electron concentration in conduction band: \begin{equation} n=N_ce^{-(E_c-E_f)/kT} \end{equation} Hole concentration in valence band: \begin{equation} p=N_ve^{-(E_f-E_v)/kT} \end{equation} In intrinsic silicon ($n=p=n_i$) we have ($E_i$ somewhere in the middle of the bandgap) \begin{equation} E_i=E_f=\frac{E_c+E_v}{2}-\frac{kT}{q}\ln{\frac{N_c}{N_v}} \end{equation} Which gives us the useful relation: \begin{equation} n_i = \sqrt{N_cN_v}e^{-(E_c-E_v)/2kT} = \sqrt{N_cN_v}e^{-E_g/2kT} \end{equation} \subsection{Behaviour in thermal equilibrium} \begin{align} \lambda & \equiv \text{mean free path} [cm] \\ \tau_c & \equiv \text{mean time between collisions} [s^{-1}] \\ v_{th} & \equiv \text{thermal velocity} [cm/s] \\[1em] \lambda & = v_{th}\cdot\tau_c \end{align} \subsection{Drift velocity} Quick electromag recap: (for holes use + and $m_p$) \begin{align} F & = -qE \\ v(t) & =-\frac{qE}{m_n}t \end{align} Average drift velocity: \begin{equation} v_d = \pm \frac{qE\tau_c}{2m_{n,p}} \end{equation} \subsection{Mobility} For the sake of simplicity, let's define mobility for both holes and electrons. (These values are usually found in diagrams.) \begin{align} \mu_{n,p} & = \frac{q\tau_c}{2m_{n,p}} \equiv \text{mobility}\ [cm^2/Vs] \\ v_{dn} & =-\mu_nE \\ v_{dp} & = \mu_pE \\ \mu_n & >_mu_p \end{align} \subsection{Drift current} For the net drift current density slap together velocity, density and charge. \begin{equation} \label{eq:drift_current} \begin{split} J^{drift} &= J_n^{drift}+J_p^{drift} \\ &= q(n\mu_n+p\mu_p)E \end{split} \end{equation} From which we can find Ohm's law: \begin{alignat}{2} J & =\sigma E & & = \frac{E}{\rho} \\ \rho & =\frac{1}{\sigma} & & = \frac{1}{q \left(n\mu_n+p\mu_p\right)} \end{alignat} Which gives us different resistances for n and p type semiconductors. \begin{align} \rho_n & \approx \frac{1}{qN_d\mu_n} \\ \rho_p & \approx \frac{1}{qN_a\mu_p} \end{align} \subsection{Diffusion current} If there is a concentration gradient, the carriers will diffuse to equalize the concentration. Here flux $F \ [cm^{-2}s^{-1}]$ is the number of electrons/holes per unit area per unit time. \begin{align} F_n & = -D_n\frac{\mathrm{d} n}{\mathrm{d} x} \\ F_p & = -D_p\frac{\mathrm{d} p}{\mathrm{d} x} \end{align} Which gives us the diffusion current density: (Defined as density times charge, ergo the double negative for electron diffusion.) \begin{align} J_n^{diff} & = qD_n\frac{\mathrm{d} n}{\mathrm{d} x} \label{label:eq:diff_current_n} \\ J_p^{diff} & =- qD_p\frac{\mathrm{d} p}{\mathrm{d} x} \label{label:eq:diff_current_p} \end{align} \subsection{Einstein relation between mobility and diffusion coefficient} \label{label:sss:einstein_rel_mob_diff} \begin{equation} \frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{kT}{q^2} \end{equation} \subsection{Total current} \begin{alignat}{2} J_{total} & =J_n+J_p & & \\ J_n & =J_n^{drift}+J_n^{diff} & & =qn\mu_nE+qD_n\frac{\mathrm{d} n}{\mathrm{d} x}\label{label:eq:electron_current_density} \\ J_p & =J_p^{drift}+J_p^{diff} & & =qp\mu_pE-qD_p\frac{\mathrm{d} p}{\mathrm{d} x} \end{alignat}