\section{MOS structure} \begin{figure}[h] \centering \caption{Gate structure} \begin{tikzpicture} \draw (0,0) rectangle ++(1,2) rectangle ++(2,-2) rectangle ++(2,2) rectangle ++(3,-2) ; \node at (0.5,1) () {$M$}; \node at (2,1) () {$SiO_2$}; \node at (4,1) () {$SCR$}; \node at (6,1) () {$p-Si$}; \end{tikzpicture} \end{figure} Where $M$ is the metal, $SiO_2$ is the gate oxide, $SCR$ is the space charge region and $p-Si$ is the p doped substrate. (note that in for the SCR, there is short between the metal and the bulk.) \subsection{Electrostatic analysis} \begin{figure}[h] \centering \caption{Charge distribution at thermal equilibrium} \begin{tikzpicture} \draw (0,0) rectangle ++(1,2) rectangle ++(2,-2) rectangle ++(2,2) rectangle ++(3,-2) ; \node at (0.5,1) () {$M$}; \node at (2,1) () {$SiO_2$}; \node at (4,1) () {$SCR$}; \node at (6,1) () {$p-Si$}; \draw[red] (0,0.2) node[left](){$0$} -- ++(1,0) -- ++(0,1.5) -- ++(0,-1.5) -- ++(2,0) -- ++(0,-0.5) -- ++(2,0) -- ++(0,0.5) -- ++(3,0) ; \node[red] at (4,0.2) () {$Q_M$}; \end{tikzpicture} \end{figure} Where at the interface of the metal and the oxide, we have continuity of the electric displacement: \begin{align} \varepsilon_{ox} E_{ox} & = Q_M \\ \Rightarrow E_{ox} & = \frac{Q_M}{\varepsilon_{ox}} \\ D_{ox} & = D_{sc,int} \\ \Rightarrow \varepsilon{ox}E_{ox} & = \varepsilon{sc}E_{sc,int} \\ \Rightarrow \frac{E_{ox}}{E_{sc,int}} & = \frac{\varepsilon_{r,sc}}{\varepsilon_{r,ox}}\qquad\approx 3 \end{align} And at the interface of the SCR and the substrate we have the following displacement continuity: \begin{align} \varepsilon_{sc} E_{sc}(x) & = -qN_A\left(x_D - x\right) \\ \Rightarrow E_{sc}(x) & = -\frac{qN_A}{\varepsilon_{sc}}\left(x-x_D\right) \end{align} \subsection{Electrostatic potential} Nothing new, just integrate over the electric field. (see \autoref{fig:mos_electrostaticpotential}) \begin{figure}[h] \centering \caption{Electrostatic potential of MOS} \label{fig:mos_electrostaticpotential} \includegraphics[width=.95\textwidth]{imgs/nmos_electrostaticpotential.png} \end{figure} \begin{equation} \phi(x) = \begin{cases} \phi_p & : x_D < x \\ \phi_p + \frac{q N_A}{2\varepsilon_{sc}}\left(x - x_D\right)^2 & : 0 < x < x_D \\ \phi_p + \frac{q N_A}{2\varepsilon_{sc}}x_D^2 - \frac{q N_A x_D}{\varepsilon_{sc}}x & : -t_{ox}<x<0 \\ \phi_{n+} & : x<t_{ox} \end{cases} \end{equation} and so finally \begin{align} \begin{split} \phi_B &= V_B + V_{ox}\\ &= \frac{q N_A x_D^2}{2\varepsilon_{sc}}+\frac{1 N_A x_D t_{ox}}{\varepsilon_{ox}} \end{split} \\ \begin{split} x_D & =\frac{\varepsilon_{sc}}{\varepsilon_{ox}}t_{ox}\left( \sqrt{1 + \frac{2\varepsilon_{ox}^2 \phi_B}{\varepsilon_{sc} q N_A t_{ox}^2}} - 1 \right)\\ &=\frac{\varepsilon_{sc}}{C_{ox}} \left( \sqrt{1+\frac{4\phi_B}{\gamma^2}}-1 \right) \end{split} \\ C_{ox} & = \frac{\varepsilon_{ox}}{t_{ox}} \\ \gamma & = \frac{1}{C_{ox}}\sqrt{2\varepsilon q N_A} \end{align} \subsection{Contact potential}