\section{MOS structure} \begin{figure}[h] \centering \caption{Gate structure} \begin{tikzpicture} \draw (0,0) rectangle ++(1,2) rectangle ++(2,-2) rectangle ++(2,2) rectangle ++(3,-2) ; \node at (0.5,1) () {$M$}; \node at (2,1) () {$SiO_2$}; \node at (4,1) () {$SCR$}; \node at (6,1) () {$p-Si$}; \end{tikzpicture} \end{figure} Where $M$ is the metal, $SiO_2$ is the gate oxide, $SCR$ is the space charge region and $p-Si$ is the p doped substrate. (note that in for the SCR, there is short between the metal and the bulk.) \subsection{Electrostatic analysis} \begin{figure}[h] \centering \caption{Charge distribution at thermal equilibrium} \begin{tikzpicture} \draw (0,0) rectangle ++(1,2) rectangle ++(2,-2) rectangle ++(2,2) rectangle ++(3,-2) ; \node at (0.5,1) () {$M$}; \node at (2,1) () {$SiO_2$}; \node at (4,1) () {$SCR$}; \node at (6,1) () {$p-Si$}; \draw[red] (0,0.2) node[left](){$0$} -- ++(1,0) -- ++(0,1.5) -- ++(0,-1.5) -- ++(2,0) -- ++(0,-0.5) -- ++(2,0) -- ++(0,0.5) -- ++(3,0) ; \node[red] at (4,0.2) () {$Q_M$}; \end{tikzpicture} \end{figure} Where at the interface of the metal and the oxide, we have continuity of the electric displacement: \begin{align} \varepsilon_{ox} E_{ox} & = Q_M \\ \Rightarrow E_{ox} & = \frac{Q_M}{\varepsilon_{ox}} \\ D_{ox} & = D_{sc,int} \\ \Rightarrow \varepsilon_{ox}E_{ox} & = \varepsilon_{sc}E_{sc,int} \\ \Rightarrow \frac{E_{ox}}{E_{sc,int}} & = \frac{\varepsilon_{r,sc}}{\varepsilon_{r,ox}}\qquad\approx 3 \end{align} And at the interface of the SCR and the substrate we have the following displacement continuity: \begin{align} - \varepsilon_{sc} E_{sc}(x) & = -qN_A\left(x_D - x\right) \\ \Rightarrow E_{sc}(x) & = -\frac{qN_A}{\varepsilon_{sc}}\left(x-x_D\right) \end{align} \subsection{Electrostatic potential} Nothing new, just integrate over the electric field. (see \autoref{fig:mos_electrostaticpotential}) \begin{figure}[H] \centering \caption{Electrostatic potential of MOS} \label{fig:mos_electrostaticpotential} \includegraphics[width=.95\textwidth]{imgs/nmos_electrostaticpotential.png} \end{figure} \begin{equation} \phi(x) = \begin{cases} \phi_p & : x_D < x \\ \phi_p + \frac{q N_A}{2\varepsilon_{sc}}\left(x - x_D\right)^2 & : 0 < x < x_D \\ \phi_p + \frac{q N_A}{2\varepsilon_{sc}}x_D^2 - \frac{q N_A x_D}{\varepsilon_{sc}}x & : -t_{ox}<x<0 \\ \phi_{n+} & : x<t_{ox} \end{cases} \end{equation} (for $phi_p$ see \autoref{label:eq:boltzman:phi_p}) and so finally \begin{align} \begin{split} \phi_B &= V_B + V_{ox}\\ &= \frac{q N_A x_D^2}{2\varepsilon_{sc}}+\frac{q N_A x_D t_{ox}}{\varepsilon_{ox}} \end{split} \\ \begin{split} x_D & =\frac{\varepsilon_{sc}}{\varepsilon_{ox}}t_{ox}\left( \sqrt{1 + \frac{2\varepsilon_{ox}^2 \phi_B}{\varepsilon_{sc} q N_A t_{ox}^2}} - 1 \right)\\ &=\frac{\varepsilon_{sc}}{C_{ox}} \left( \sqrt{1+\frac{4\phi_B}{\gamma^2}}-1 \right) \end{split} \\ C_{ox} & = \frac{\varepsilon_{ox}}{t_{ox}} \\ \gamma & = \frac{1}{C_{ox}}\sqrt{2\varepsilon q N_A} \end{align} \subsection{Contact potential} \begin{figure}[H] \caption{Contact potentials} \label{fig:mos_contactpotentials} \centering \includegraphics[width=.95\textwidth]{imgs/contact_potentials_mos.png} \end{figure} \begin{figure}[H] \label{fig:mos_workfunctiondifferences} \centering \includegraphics[width=.8\textwidth]{imgs/MOSFET_workfunction.png} \caption{a) Constant $E_0$ convention used in the MOS structure in this course. b) Constant $E_f$ convention used in the MOS structure.} \end{figure} %$\Phi_M$ is the work function we build up to have a constant fermi-level (blue). \subsection{Bias} \begin{figure}[H] \caption{MOS under bias (1)} \label{fig:mos_under_bias01} \centering \includegraphics[width=.95\textwidth]{imgs/mos_under_bias_SCR.png} \end{figure} Applying voltage increases niveau of the dotted line at $-t_{ox}$, which increases the SCR. \begin{figure}[H] \caption{Mos under bias (2)} \label{fig:mos_bias02} \centering \includegraphics[width=.95\textwidth]{imgs/MOS_under_bias.png} \end{figure} \begin{equation} x_d(V_{GB}) = \frac{\varepsilon_{sc}}{C_{ox}}\left(\sqrt{1+\frac{4\left(\phi_B+V_{GB}\right)}{\gamma^2}}-1\right) \end{equation} \subsection{Depletion regime} In all previous equations, replace $\phi_B \to \phi_B+V_{GB}$. \begin{align} x_d(V_{GB}) & = \frac{\varepsilon_s}{C_{ox}}\left( \sqrt{1 + \frac{4\left( \phi_B + V_{GB} \right)}{\gamma^2}} - 1 \right) \\ V_B(V_{GB}) & = \frac{q N_A \left(x_d(V_{GB})\right)^2}{2\varepsilon_{sc}} \\ V_{ox}(V_{GB}) & = \frac{q N_a x_d(V_{GB})t_{ox}}{\varepsilon_{ox}} \end{align} \subsection{Flatband regime} At a certain voltage, the SCR disappears. If the voltage is decreased further, we find ourselves in the \emph{accumulation regime} which only acts as a capacitor. \begin{equation} V_{FB} = -\phi_B \end{equation} \subsection{Threshold voltage} At a certain $V_{GS}$, we find that $n(0) = N_a$. At this point we can no longer neglect minority carriers for electrostatics. \begin{align} n(0) & = n_ie^{q\phi(0)/kT} \\ \left.\phi(0)\right|_{V_T} & = \left.\frac{kT}{q}\ln\frac{n(0)}{n_i}\right|_{V_T} = \frac{kT}{q} \ln\frac{N_a}{n_i} \\ V_B(V_T) & = -2\phi_p \\ V_B(V_T) & = \frac{q N_A \left(x_D(V_T)\right)^2}{2\varepsilon_{sc}} = - 2\phi_p \\ x_d(V_T) & =x_{d,max}=\sqrt{\frac{-4\varepsilon_{sc}\phi_p}{qN_A}} \\ V_{ox}(V_T) & =E_{ox}(V_T)t_{ox}=\frac{qN_Ax_{d,max}t_{ox}}{\varepsilon_{ox}}=\gamma\sqrt{-2\phi_p} \\ V_T & = V_{FB} - 2\phi_p+\gamma\sqrt{-2\phi_p} \end{align} Notes: \begin{enumerate} \item Higher inner doping level, higher $V_T$. \item Thinner oxide, lower $V_T$. \end{enumerate} \subsubsection{Body effect} In the case of a non-zero $V_{SB}$, we have to adjust the threshold voltage: \begin{equation} V_{TH} = V_{TH0} + \gamma\left(\sqrt{|2\phi_F + V_{SB}|} - \sqrt{|2\phi_F|}\right) \qquad \text{where}\quad \Phi_F = \frac{k T}{q} \ln\left(\frac{N_{sub}}{n_i}\right) \end{equation} \subsection{Strong inversion} \begin{equation} V_{GB} > V_T \end{equation} By applying higher voltage, we increase inversion charge. \begin{align} Q & =CV \\ Q_n & = -C_{ox}\left(V_{GB}-V_T\right) \\ \end{align} \begin{figure}[H] \caption{MOS charge summary} \label{fig:mos_chargesummary} \centering \includegraphics[width=.5\textwidth]{imgs/mos_charge_summary.png} \end{figure}