\section{PN junction} \subsection{What are we even doing} We stick together n and p doped regions, such that the doping effectively becomes a step function. This causes majority carriers (electrons in n region, holes in p region) to diffuse the minority carrier side, resulting in a new equilibrium (\autoref{label:fig:pn_carrier_profile_equilibrium}). \begin{figure}[h] \centering \begin{subfigure}[b]{.45\textwidth} \includegraphics[width=\textwidth]{imgs/pn_carrier_profile_equilibrium.png} \caption{Resulting carrier profile in thermal equilibrium} \label{label:fig:pn_carrier_profile_equilibrium} \end{subfigure} \hfill \begin{subfigure}[b]{.45\textwidth} \includegraphics[width=\textwidth]{imgs/pn_fermi_level_band_bending.png} \caption{Resulting carrier profile in thermal equilibrium} \label{label:fig:pn_fermi_level_band_bending} \end{subfigure} \end{figure} As can be seen in \autoref{label:fig:pn_fermi_level_band_bending}, the energy levels for conduction and valence bands bend, whereas the fermi level remains constant. \subsection{Depletion approximation} We assume p and n regions quasi-neutral, and the intermediate space charge region to be completely depleted of carriers. We further assume all transitions are expressed as step-functions. This allows the following simplified equations: \begin{align} \rho(x) & = \begin{dcases} 0 & x<-x_p \\ -qN_a & -x_p<x<0 \\ qN_d & 0<x<x_n \\ 0 & x_n<x \end{dcases} \\ E(x) & =\begin{dcases} 0 & x<-x_p \\ -\frac{qN_a}{\varepsilon}(x+x_p) & - x_p<x<0 \\ \frac{qN_d}{\varepsilon}(x-x_n) & 0<x<x_n \\ 0 & x_n<x \end{dcases} \end{align} Where $E$ is found using \eqref{label:eq:def_electric_field_integral}.