\section{Diode applications} \subsection{Small signal} If $i\ll I$ and $v\ll V$, then we can use the small signal approximation. \begin{equation} \begin{split} I+i &= I_0\left(\exp\frac{q(V+v)}{kT}-1\right) \\ &=I_0\left(\exp\frac{q(V)}{kT}\exp\frac{q(v)}{kT}-1\right)\\ &\approx I_0\left(\exp\frac{q(V)}{kT}\left(1+\frac{qv}{kT}\right)-1\right)\\ &= I_0\left( \exp\frac{qV}{kT} - 1 \right) + I_0 \left( \exp\left(\frac{qV}{kT}\right)\frac{qv}{kT} \right) \end{split} \end{equation} Which gives us the smallsignal current \begin{align} i & = \frac{q\left(I+I_0\right)}{kT}v = g_d v \\ g_d & = \frac{q\left(I+I_0\right)}{kT} \end{align} \subsubsection{Capacitances of small-signal model} \begin{figure}[h] \centering \caption*{Small signal model for diode} \begin{circuitikz} \draw (-3,2) to [Do] (-3,0); \draw[->] (-2,1) -- (-1,1); \draw (0,0) to [R,l=$g_d$] (0,2); \draw (2,0) to [C,l=$C_j$] (2,2); \draw (4,0) to [C,l=$C_d$] (4,2); \draw (0,0) to [short] (4,0); \draw (0,2) to [short] (4,2); \draw (2,2) to [short] (2,2.5); \draw (2,-0.5) to [short] (2,0); \end{circuitikz} \end{figure} \begin{align} C_j & = \frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} \\ C_d & = \frac{q}{kT}\tau_T I \\ \tau_T & \equiv \text{equivalent transit time of carriers} \end{align} Where $C_j$ dominates in reverse bias and small forward bias, and $C_d$ dominates in large forward bias ($V>\frac{\phi_B}{2}$). \subsection{Large signal} \subsubsection{Rectifier} This is pretty much trivial. \begin{center} \begin{circuitikz} \draw (0,-2) to [sV,l=$V_{in}$] ++(0,4) to [short] ++(2,0) to [Do,v=$V_D$] ++(0,-2) to [R,l=$R_L$,v=$V_o$] ++(2,0) to [Do] ++(0,-2) to [short] (0,-2); draw (4,0) to [Do] ++(0,2) to [short] ++(-2,0); \draw (2,-2) to [Do] ++(0,2); \draw (4,0) to [Do] ++(0,2) to [short] ++(-2,0); \end{circuitikz} \end{center} \begin{equation} V_o = V_{in}-2V_D \end{equation} \subsubsection{Voltage regulator} \begin{center} \begin{circuitikz} \draw (0,0) to [V,v<=$10\pm1\ V$] (0,8) to [short] ++(2,0) to [R,l=$R_1$] ++(0,-2) to [short] ++(0,-2) to [Do] ++(0,-1) to [Do] ++(0,-1) to [Do] ++(0,-1) to [short] ++(0,-1) to [short] (0,0); \draw (2,5) to [nos] ++(2,0) to [R,l=$R_2$] ++(0,-5) to [short] (0,0); \end{circuitikz} \end{center} How to go about it: \begin{align} I & = \frac{V_{in}-\sum V_D}{R_1} \\ r_d & =\left[\frac{\mathrm{d}I_D}{\mathrm{d}V_d}\right]^{-1} =\frac{nV_t}{I_0} \\ r & = \sum r_d \\ \Delta V_o & = \Delta V_{in}\frac{r}{r+R_2} \\[1em] n & \equiv\text{non-ideality factor} \\ V_t & = \frac{kT}{q} \end{align} Once the load is connected and draws current, we have a further small variation: \begin{align} I_{load} & = \frac{\sum V_D}{R_2} \\ \Delta V_o & = I_{load}r \end{align} \subsection{Special diode types} \subsubsection{Zener} Is heavily doped making the depletion layer extremely thing, and thus allowing for QM tunneling in reverse biased diode. (In this case known as band-to-band tunneling.) \begin{figure}[h] \centering \caption[short]{Band-bending zener diode} \includegraphics[width=.75\textwidth]{imgs/zener_diode_band_bending.png} \end{figure} The voltage at which the diode starts conducting is called the zener voltage $V_Z$. The diode then has a low resistance $R_Z$. \subsubsection{Esaki} Heavily doped with the tunneling effect in forward bias. \begin{figure}[h] \centering caption{Esaki tunnel diode} \includegraphics[width=.75\textwidth]{imgs/esaki_tunnel_diode.png} \end{figure} \subsubsection{Schottky} A schottky diode has $I_0$ $10^3$ to $10^8$ times bigger than a PN diode. Preferred in low voltage high current applications. \subsubsection{Photodiodes} \begin{equation} I = I_0\left( e^{\frac{qV}{kT}} - 1\right)-I_{photo} \end{equation}