\section{PN junction diode} \subsection{Carrier concentration under bias} Under forward bias, the net current is no longer zero. \begin{equation} \left| J_{drift} \right|<\left| J_{diff} \right| \end{equation} Which causes injection of minority carriers into the QNR regions giving rise to `high' currents. \subsection{Diode current} To calculate the current, we \begin{enumerate} \item Calculate concentration of minority carriers at the edges of SCR \item Calculate minority carrier diffusion current in each QNR for $I_n$ and $I_p$ \item Sum the currents $I_n$ and $I_p$ \end{enumerate} \subsubsection{Minority carrier conditions} We use the quasi-equilibrium equation to misuse equations for equilibrium. \begin{align} \frac{n(x_1)}{n(x_2)} & \approx \exp{\frac{q(\phi(x_1)-\phi(x_2))}{kT}} \\ \frac{p(x_1)}{p(x_2)} & \approx \exp{\frac{-q(\phi(x_1)-\phi(x_2))}{kT}} \end{align} So by using $x_n$ and $x_p$ in the above equation we have the following: \begin{align} \frac{n(x_n)}{n(-x_p)} & \approx \exp{\frac{q(\phi_B-V)}{kT}} \\ \frac{p(x_n)}{p(-x_p)} & \approx \exp{\frac{-q(\phi_B-V)}{kT}} \\ p(-x_p) & =N_a \\ n(x_n) & =N_d \end{align} And so we find what we needed: \begin{align} n(-x_p) & \approx N_d\exp\frac{q(V-\phi_B)}{kT} \\ p(x_n) & \approx N_a\exp\frac{q(V-\phi_B)}{kT} \end{align} Then by using the Boltzman relations \eqref{label:eq:boltzman:phi_n} and \eqref{label:eq:boltzman:phi_p} we find \begin{align} \phi_B & = \frac{kT}{q}\ln\frac{N_dN_a}{n_i^2} \\ \Rightarrow n(-x_p) & \approx \frac{n_i^2}{N_a}\exp\frac{qV}{kT} \\ \Rightarrow p(x_n) & \approx \frac{n_i^2}{N_d}\exp\frac{qV}{kT} \end{align} \subsubsection{Diffusion current in QNR} We assume a linear gradient between $n(-W_p)$ and $n(-x_p)$ to easily use \eqref{label:eq:diff_current_n} to find \begin{equation} \begin{split} J_n^{diff} &= qD_n\frac{n_p(-x_p)-n_p(-W_p)}{W_p-x_p}\\ &= qD_n \frac{\left(\frac{n_i^2}{N_a}\exp{\frac{qV}{kT}}\right)-\frac{n_i^2}{N_a}}{W_p-x_p}\\ &= q\frac{n_i^2}{N_a}\frac{D_n}{W_p-x_p}\left(\exp{\frac{qV}{kT}}-1\right) \end{split} \end{equation} \subsubsection{Total diode current} \begin{equation} \begin{split} J & = J_n+J_p \\ & =q n_i^2 \left( \frac{1}{N_A}\frac{D_n}{W_p-x_p} + \frac{1}{N_D}\frac{D_p}{W_n-x_n} \right)\left(\exp \frac{qV}{kT} - 1\right) \end{split} \end{equation} Or so simplify \begin{align} I & =I_0\left(\exp\frac{qV}{kT}-1\right) \\ I_0 & = A q n_i^2 \left( \frac{D_n}{L_n N_A} + \frac{D_p}{L_p N_D} \right) \end{align} Note that sometimes a non-ideality factor $n$ is used: \begin{equation} I = I_0\left(\exp\frac{qV}{nkT}-1\right) \end{equation} \subsection{PN junction reverse bias} When applying a reverse bias, the depletion region gets wider and the electric field increases. There comes a point when the diode breaks down and destroys itself. \begin{equation} W_{dep} = \sqrt{\frac{2\varepsilon}{q}\left(\frac{1}{N_A}+\frac{1}{N_D}\right)\left(V_0+V_R\right)} \end{equation}