diff --git a/03_pn_junction_basics.tex b/03_pn_junction_basics.tex index 0a5d0a48631b12969c4616c860753fd0eb87b414..c79f80d8bef31cd0df2eede69e0f74aa59fbf0e5 100644 --- a/03_pn_junction_basics.tex +++ b/03_pn_junction_basics.tex @@ -67,8 +67,12 @@ And by extension Rearranging the above, we find an expression for the potential: \begin{align} - \phi & =\frac{kT}{q}\ln\frac{n}{n_i} \label{label:eq:boltzman:phi_n} \\ - \phi & = -\frac{kT}{q}\ln\frac{p}{n_i} \label{label:eq:boltzman:phi_p} + \phi_n & =\frac{kT}{q}\ln\frac{n}{n_i} \label{label:eq:boltzman:phi_n} \\ + \phi_p & = -\frac{kT}{q}\ln\frac{p}{n_i} \label{label:eq:boltzman:phi_p} \\ + \begin{split} + \phi_B & = \phi_n-\phi_p \\ + & = \frac{kT}{q} \ln\frac{N_A N_D}{n_i^2} + \end{split} \label{label:eq:boltzman:phi_B} \end{align} For Si at room temperature this is an increase of 60 mV per decade in doping. \begin{equation} diff --git a/05_pn_junction_bias.tex b/05_pn_junction_bias.tex index bd2312c071d8181abc402967b799a1aace8f7a32..b69e68fe7053d308f4b878d8e204b2f07958e0fe 100644 --- a/05_pn_junction_bias.tex +++ b/05_pn_junction_bias.tex @@ -32,17 +32,17 @@ Importantly, the SCR resistance ist the most important one and others can be neg \subsection{Space charge region (SCR)} In essence, applying a forward/reverse bias effects the depletion region: \begin{align} - \phi_B & \rightarrow \phi_B-V_{pn} \\ - x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\ - x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\ - x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_dN_a}{q(N_a+N_d)}} \\ - \left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V)(N_aN_d)}{\varepsilon(N_a+N_d)}} + \phi_B & \rightarrow \phi_B-V_{pn} \\ + x_n(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_a}{q(N_a+N_d)N_d}} \\ + x_p(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)N_d}{q(N_a+N_d)N_a}} \\ + x_d(V) & =\sqrt{\frac{2\varepsilon(\phi_B-V)(N_a+N_d)}{q N_d N_a}} \\ + \left|E(V)\right| & =\sqrt{\frac{2q(\phi_B-V) N_a N_d}{\varepsilon (N_a + N_d)}} \end{align} In the case of a strongly doped $p^+n$ junction, we can approximate the SCR since it exists only in the lesser doped region. \begin{equation} - x_n(V)=x_{n0}\sqrt{a-\frac{V}{\phi_B}} + x_n(V)=x_{n0}\sqrt{1-\frac{V}{\phi_B}} \end{equation} @@ -55,7 +55,7 @@ In reverse bias, the PN junction acts as a capacitor. So as a function of the bias voltage, we get \begin{equation} \begin{split} - C_j(V) &= \frac{\varepsilon}{x_c(V)}\\ + C_j(V) &= \frac{\varepsilon}{x_d(V)}\\ &=\sqrt{\frac{q\varepsilon N_aN_d}{2q(\phi_B-V)(N_a+N_d)}}\\ &=\frac{C_{j0}}{\sqrt{1-\frac{V}{\phi_B}}} \end{split}