diff --git a/01_fundamentals.tex b/01_fundamentals.tex index 0952adb19827c5131870e5b5c4da3f42abaef31f..e0d9ba23e7c03867524a7fd19ea5f9bcbcbb48b9 100644 --- a/01_fundamentals.tex +++ b/01_fundamentals.tex @@ -50,6 +50,6 @@ For doners we have: Every semiconductor is neutral, which imposes the following condition: \begin{equation} - P_0-n_0+N_d + N_a = 0 + P_0-n_0 + N_d - N_a = 0 \end{equation} where $p_0n_0=n_i^2$. \ No newline at end of file diff --git a/02_carrier_transport.tex b/02_carrier_transport.tex index 51d5be0abbde6174d71ace8867bad6b9f0ca8571..d068b2bd82a90265889bbc0d1aef9970b86a8a60 100644 --- a/02_carrier_transport.tex +++ b/02_carrier_transport.tex @@ -8,7 +8,7 @@ but heres the probability distribution: f(E) = \frac{1}{1+e^{(E-E_F)/kT}} \end{equation} -Electron concentration in conductance band: +Electron concentration in conduction band: \begin{equation} n=N_ce^{-(E_c-E_f)/kT} \end{equation} @@ -62,8 +62,11 @@ For the sake of simplicity, let's define mobility for both holes and electrons. \subsection{Drift current} For the net drift current density slap together velocity, density and charge. \begin{equation} - label{eq:drift_current} - J^{drift} = J_n^{drift}+J_p^{drift} = q(n\mu_n+p\mu_p)E + \label{eq:drift_current} + \begin{split} + J^{drift} &= J_n^{drift}+J_p^{drift} \\ + &= q(n\mu_n+p\mu_p)E + \end{split} \end{equation} From which we can find Ohm's law: \begin{alignat}{2}