Skip to content
Snippets Groups Projects
user avatar
Moi authored
432bce98
History

benchmark

Benchmark several style transfer architectures

Project Organization

├── LICENSE
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.

├── docs               <- A default Sphinx project; see sphinx-doc.org for details

├── docker             <- Dockerfiles for running the models

├── models             <- Trained and serialized models, model predictions, or model summaries

├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.

├── references         <- Data dictionaries, manuals, and all other explanatory materials.

├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting

├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`

├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py

└── app.py             <- Interactive demonstration of the behavior of the multi-box IoU losses

Installation

  1. Clone the repo: git clone https://gitlab.epfl.ch/sinergia/benchmark.git
  2. Install the requirements: pip install -r requirements.txt
  3. Play around ;)

Interactive visualization of the behavior of the multi-box IoU losses

  1. Run python app.py
  2. Open localhost:8050 on your favorite browser.

Project based on the cookiecutter data science project template. #cookiecutterdatascience