import json import logging import os from pathlib import Path import numpy as np import torch from decentralizepy.sharing.Sharing import Sharing from decentralizepy.utils import conditional_value, identity class PartialModel(Sharing): """ This class implements the vanilla version of partial model sharing. """ def __init__( self, rank, machine_id, communication, mapping, graph, model, dataset, log_dir, alpha=1.0, dict_ordered=True, save_shared=False, metadata_cap=1.0, accumulation=False, save_accumulated="", change_transformer=identity, accumulate_averaging_changes=False, ): """ Constructor Parameters ---------- rank : int Local rank machine_id : int Global machine id communication : decentralizepy.communication.Communication Communication module used to send and receive messages mapping : decentralizepy.mappings.Mapping Mapping (rank, machine_id) -> uid graph : decentralizepy.graphs.Graph Graph reprensenting neighbors model : decentralizepy.models.Model Model to train dataset : decentralizepy.datasets.Dataset Dataset for sharing data. Not implemented yet! TODO log_dir : str Location to write shared_params (only writing for 2 procs per machine) alpha : float Percentage of model to share dict_ordered : bool Specifies if the python dict maintains the order of insertion save_shared : bool Specifies if the indices of shared parameters should be logged metadata_cap : float Share full model when self.alpha > metadata_cap accumulation : bool True if the the indices to share should be selected based on accumulated frequency change save_accumulated : bool True if accumulated weight change should be written to file. In case of accumulation the accumulated change is stored. If a change_transformer is used then the transformed change is stored. change_transformer : (x: Tensor) -> Tensor A function that transforms the model change into other domains. Default: identity function accumulate_averaging_changes: bool True if the accumulation should account the model change due to averaging """ super().__init__( rank, machine_id, communication, mapping, graph, model, dataset, log_dir ) self.alpha = alpha self.dict_ordered = dict_ordered self.save_shared = save_shared self.metadata_cap = metadata_cap self.total_meta = 0 self.accumulation = accumulation self.save_accumulated = conditional_value(save_accumulated, "", False) self.change_transformer = change_transformer self.accumulate_averaging_changes = accumulate_averaging_changes # getting the initial model self.shapes = [] self.lens = [] with torch.no_grad(): tensors_to_cat = [] for _, v in self.model.state_dict().items(): self.shapes.append(v.shape) t = v.flatten() self.lens.append(t.shape[0]) tensors_to_cat.append(t) self.init_model = torch.cat(tensors_to_cat, dim=0) if self.accumulation: self.model.accumulated_changes = torch.zeros_like( self.change_transformer(self.init_model) ) self.prev = self.init_model if self.save_accumulated: self.model_change_path = os.path.join( self.log_dir, "model_change/{}".format(self.rank) ) Path(self.model_change_path).mkdir(parents=True, exist_ok=True) self.model_val_path = os.path.join( self.log_dir, "model_val/{}".format(self.rank) ) Path(self.model_val_path).mkdir(parents=True, exist_ok=True) # Only save for 2 procs: Save space if self.save_shared and not (rank == 0 or rank == 1): self.save_shared = False if self.save_shared: self.folder_path = os.path.join( self.log_dir, "shared_params/{}".format(self.rank) ) Path(self.folder_path).mkdir(parents=True, exist_ok=True) self.model.shared_parameters_counter = torch.zeros( self.change_transformer(self.init_model).shape[0], dtype=torch.int32 ) def extract_top_gradients(self): """ Extract the indices and values of the topK gradients. The gradients must have been accumulated. Returns ------- tuple (a,b). a: The magnitudes of the topK gradients, b: Their indices. """ logging.info("Returning topk gradients") G_topk = torch.abs(self.model.model_change) std, mean = torch.std_mean(G_topk, unbiased=False) self.std = std.item() self.mean = mean.item() return torch.topk( G_topk, round(self.alpha * G_topk.shape[0]), dim=0, sorted=False ) def serialized_model(self): """ Convert model to a dict. self.alpha specifies the fraction of model to send. Returns ------- dict Model converted to a dict """ if self.alpha >= self.metadata_cap: # Share fully return super().serialized_model() with torch.no_grad(): _, G_topk = self.extract_top_gradients() self.model.shared_parameters_counter[G_topk] += 1 if self.accumulation: self.model.rewind_accumulation(G_topk) if self.save_shared: shared_params = dict() shared_params["order"] = list(self.model.state_dict().keys()) shapes = dict() for k, v in self.model.state_dict().items(): shapes[k] = list(v.shape) shared_params["shapes"] = shapes shared_params[self.communication_round] = G_topk.tolist() with open( os.path.join( self.folder_path, "{}_shared_params.json".format(self.communication_round + 1), ), "w", ) as of: json.dump(shared_params, of) logging.info("Extracting topk params") tensors_to_cat = [v.data.flatten() for v in self.model.parameters()] T = torch.cat(tensors_to_cat, dim=0) T_topk = T[G_topk] logging.info("Generating dictionary to send") m = dict() if not self.dict_ordered: raise NotImplementedError m["alpha"] = self.alpha m["indices"] = G_topk.numpy().astype(np.int32) m["params"] = T_topk.numpy() m["send_partial"] = True assert len(m["indices"]) == len(m["params"]) logging.info("Elements sending: {}".format(len(m["indices"]))) logging.info("Generated dictionary to send") logging.info("Converted dictionary to pickle") self.total_data += len(self.communication.encrypt(m["params"])) self.total_meta += len(self.communication.encrypt(m["indices"])) return m def deserialized_model(self, m): """ Convert received dict to state_dict. Parameters ---------- m : dict dict received Returns ------- state_dict state_dict of received """ if "send_partial" not in m: return super().deserialized_model(m) with torch.no_grad(): state_dict = self.model.state_dict() if not self.dict_ordered: raise NotImplementedError shapes = [] lens = [] tensors_to_cat = [] for _, v in state_dict.items(): shapes.append(v.shape) t = v.flatten() lens.append(t.shape[0]) tensors_to_cat.append(t) T = torch.cat(tensors_to_cat, dim=0) index_tensor = torch.tensor(m["indices"], dtype=torch.long) logging.debug("Original tensor: {}".format(T[index_tensor])) T[index_tensor] = torch.tensor(m["params"]) logging.debug("Final tensor: {}".format(T[index_tensor])) start_index = 0 for i, key in enumerate(state_dict): end_index = start_index + lens[i] state_dict[key] = T[start_index:end_index].reshape(shapes[i]) start_index = end_index return state_dict def _pre_step(self): """ Called at the beginning of step. """ logging.info("PartialModel _pre_step") with torch.no_grad(): tensors_to_cat = [ v.data.flatten() for _, v in self.model.state_dict().items() ] pre_share_model = torch.cat(tensors_to_cat, dim=0) change = self.change_transformer(pre_share_model - self.init_model) if self.accumulation: if not self.accumulate_averaging_changes: # Need to accumulate in _pre_step as the accumulation gets rewind during the step self.model.accumulated_changes += change change = self.model.accumulated_changes.clone().detach() else: # For the legacy implementation, we will only rewind currently accumulated values # and add the model change due to averaging in the end change += self.model.accumulated_changes # stores change of the model due to training, change due to averaging is not accounted self.model.model_change = change def _post_step(self): """ Called at the end of step. """ logging.info("PartialModel _post_step") with torch.no_grad(): tensors_to_cat = [ v.data.flatten() for _, v in self.model.state_dict().items() ] post_share_model = torch.cat(tensors_to_cat, dim=0) self.init_model = post_share_model if self.accumulation: if self.accumulate_averaging_changes: self.model.accumulated_changes += self.change_transformer( self.init_model - self.prev ) self.prev = self.init_model self.model.model_change = None if self.save_accumulated: self.save_change() def save_vector(self, v, s): """ Saves the given vector to the file. Parameters ---------- v : torch.tensor The torch tensor to write to file s : str Path to folder to write to """ output_dict = dict() output_dict["order"] = list(self.model.state_dict().keys()) shapes = dict() for k, v1 in self.model.state_dict().items(): shapes[k] = list(v1.shape) output_dict["shapes"] = shapes output_dict["tensor"] = v.tolist() with open( os.path.join( s, "{}.json".format(self.communication_round + 1), ), "w", ) as of: json.dump(output_dict, of) def save_change(self): """ Saves the change and the gradient values for every iteration """ self.save_vector(self.model.model_change, self.model_change_path)