diff --git a/eval/run_xtimes_reddit_rws.sh b/eval/run_xtimes_reddit_rws.sh index 8cabb9957a93577e2154c23f014604e6987209a8..2df346266234af80aa5774c6924dd1f7c8b747b8 100755 --- a/eval/run_xtimes_reddit_rws.sh +++ b/eval/run_xtimes_reddit_rws.sh @@ -54,7 +54,7 @@ export PYTHONFAULTHANDLER=1 # Base configs for which the gird search is done # tests=("step_configs/config_reddit_sharing_topKdynamicGraph.ini") # tests=("step_configs/config_reddit_sharing_topKsharingasyncrw.ini" "step_configs/config_reddit_sharing_topKdpsgdrwasync.ini" "step_configs/config_reddit_sharing_topKdpsgdrw.ini") -tests=("step_configs/config_reddit_sharing_dynamicGraph.ini") # ("step_configs/config_reddit_sharing_dpsgdrwasync0.ini") +tests=("step_configs/config_reddit_sharing_dynamicGraphJwins.ini") # ("step_configs/config_reddit_sharing_dpsgdrwasync0.ini") # tests=("step_configs/config_reddit_sharing_dpsgdrw.ini" "step_configs/config_reddit_sharing_dpsgdrwasync.ini" "step_configs/config_reddit_sharing_sharingasyncrw.ini" "step_configs/config_reddit_sharing_sharingrw.ini") # Learning rates lr="1" @@ -71,7 +71,7 @@ echo samples per user: $samples_per_user # random_seeds for which to rerun the experiments # random_seeds=("90" "91" "92" "93" "94") -random_seeds=("90") +random_seeds=("90" "91" "92") echo batchsize: $batchsize echo communication rounds per global epoch: $comm_rounds_per_global_epoch # calculating how many batches there are in a global epoch for each user/proc diff --git a/eval/step_configs/config_reddit_sharing_dynamicGraphJwins.ini b/eval/step_configs/config_reddit_sharing_dynamicGraphJwins.ini new file mode 100644 index 0000000000000000000000000000000000000000..ca4cc1b861db55400a845291e403949ea866d1b4 --- /dev/null +++ b/eval/step_configs/config_reddit_sharing_dynamicGraphJwins.ini @@ -0,0 +1,45 @@ +[DATASET] +dataset_package = decentralizepy.datasets.Reddit +dataset_class = Reddit +random_seed = 97 +model_class = RNN +train_dir = /mnt/nfs/shared/leaf/data/reddit_new/per_user_data/train +test_dir = /mnt/nfs/shared/leaf/data/reddit_new/new_small_data/test +; python list of fractions below +sizes = + +[OPTIMIZER_PARAMS] +optimizer_package = torch.optim +optimizer_class = SGD +lr = 0.001 + +[TRAIN_PARAMS] +training_package = decentralizepy.training.Training +training_class = Training +rounds = 47 +full_epochs = False +batch_size = 16 +shuffle = True +loss_package = torch.nn +loss_class = CrossEntropyLoss + +[COMMUNICATION] +comm_package = decentralizepy.communication.TCPRandomWalkRouting +comm_class = TCPRandomWalkRouting +addresses_filepath = ip_addr_6Machines.json +compression_package = decentralizepy.compression.Eliaszfplossy1 +compression_class = Eliaszfplossy1 +compress = True +sampler = equi + +[SHARING] +sharing_package = decentralizepy.sharing.JwinsDynamicGraph +sharing_class = JwinsDynamicGraph +alpha=0.0833 +lower_bound=0.2 +metro_hastings=False +change_based_selection = True +wavelet=sym2 +level= None +accumulation = True +accumulate_averaging_changes = True \ No newline at end of file