
CS-449 Project Milestone 1: Baseline

Recommendation with Global Averaging

Motivation and Outline: Anne-Marie Kermarrec
Detailed Design, Writing, Tests: Erick Lavoie

Teaching Assistant: Athanasios Xygkis
Last Updated: 2021/03/08 18:39:15 +01’00’

Due Date: 19-03-2021 23:59 CET
Submission URL: https://cs449-sds-2021-sub.epfl.ch:8083/m1

General Questions on Moodle
Personal Questions: athanasios.xygkis@epfl.ch

Abstract

In this project, you will progressively build a recommender system for
Movies, that will leverage the distributed computing capabilities of Spark.
In this Milestone, you will start by implementing a simple baseline pre-
diction model for recommendation against which you will compare those
of the next milestones. You will measure its CPU time to develop insights
in the system costs of various prediction methods.

1 Motivation: Movie Recommender

You maintain a movie recommendation platform: your goal is to automatically
recommend new movies for your users that they are most likely to appreciate.
While there is a range of increasingly sophisticated and accurate techniques to
build recommender systems, you will first start by building a simple system
based on global averages, that still take into account some personal bias in how
users rate movies. This is fast and inexpensive and will therefore serve as a
good baseline to compare with the more sophisticated techniques of the next
milestones.

Prediction methods based on global averages are straight-forward to im-
plement with the Resilient Distributed Dataset (RDD)1 in combination with
broadcast variables2, so this Milestone will be a great way to assess the skills
you have developed in the exercise sessions.

1https://spark.apache.org/docs/latest/rdd-programming-guide.html#

resilient-distributed-datasets-rdds
2https://spark.apache.org/docs/latest/rdd-programming-guide.html#

broadcast-variables

1

https://cs449-sds-2021-sub.epfl.ch:8083/m1
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables
https://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables

1.1 Dataset: MovieLens 100K

For this milestone, you will use the MovieLens 100K dataset [1], as a represen-
tative example of what you might collect on your recommender platform. You
can download the dataset from this url: https://grouplens.org/datasets/

movielens/100k/.
The 100K MovieLens dataset comprises 100,000 ratings from 943 users on

1,682 movies. Each user has rated at least 20 different movies, and each movie
has been rated by at least one user.This dataset is small compared to the amount
of RAM available in common laptops and desktops, or the IC Cluster (as of
January 2021): all the exercises for this milestone should complete in a few
seconds or minutes at most.

The ratings are tuples (u, i, r, t) of an (anonymized) user id u ∈ N (positive
integers, starting at 1), a movie id i ∈ N (also a positive integer starting at
1)3, a rating r ∈ {1, 2, 3, 4, 5}, and timestamp t (which we won’t use). They are
saved on the file system as tab-separated values, one line per tuple, in the file
’ml-100k/u.data’. For example, the first line of the file records that user 196
has rated movie 242 with a rating of 3 at timestamp 881250949 :

196 242 3 881250949

All numbers are represented with ASCII characters, therefore user id 196
really represents that number (it is not a binary representation of the number).
All users have made at least 20 ratings, but some movies may be rated by only
one user. The dataset in that sense is ”compact”: all user ids and movie ids are
used in at least one rating4.

For convenience and replicability in testing different solutions, the same rat-
ings are split randomly 80% training and 20% testing in five different folds
for cross-validation5 such that the test sets are mutually exclusives. The train
and test sets are numbered according to their fold, respectively in the files
’ml-100k/uX.base’ and ’ml-100k/uX.test’ where X is 1 to 5. It may happen
that some movies are not rated in one of the the training or test sets, because
they only had one rating. You therefore need to be careful with any opera-
tion involving division by item-based sums or averages, as they may introduce
divisions by zero.

If you were developing new algorithms, you should ensure your results are
not specific to the particular test set you have chosen by doing cross-validation
on all folds. However, for the sake of simplicity, you will only test on the
ml-100k/u1.test dataset (with the corresponding ml-100k/u1.base).

3We will use the more generic item rather than movie through the rest of the document
to follow the literature conventions on collaborative filtering.

4This won’t necessarily be the case in the next milestones.
5https://en.wikipedia.org/wiki/Cross-validation_(statistics)

2

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

2 Proxy Problem: Predicting Ratings

Recommendations presented to a given user will be the top n predictions of
ratings of unseen items, with typically 5 ≤ n ≤ 20. For movie recommendations,
it is not so important that the actual five best ratings are suggested but more
that those actually recommended are at least above average and as good as
possible. The closer the predictions are to the actual ratings on the test set, the
more likely the top n predictions will be for highly rated items.

You will therefore evaluate the quality of different solutions according to
their predictive capabilities on test sets. To ensure the solutions generalize to
unseen items, the predictions will be made only using ratings from the train set
(u1.base). The ratings of the test set (u1.test) will only be used the measure
the quality of the prediction.

Multiple metrics are possible to measure the accuracy of predictions [3]. You
will use the simple Mean Absolute Error (MAE), i.e. average of the absolute
error between the actual rating for user u of item i (ru,i) and the predicted
rating for the same user-item pair (pu,i) for all ratings of the Test set6:

Mean-Absolute-Error (MAE) =
1

|Test|
∑

ru,i∈Test

|pu,i − ru,i| (1)

3 Baseline: Prediction based on Global Average
Deviation

The following baseline incorporates some user bias, in the form of a user average
rating, in predictions, and then averages normalized deviations from each user’s
average. To understand why, observe the following two things.

First, some users tend to rate more positively than others and therefore have
different average ratings over all items, which we note r̄u,•. You will therefore
pre-process ratings to instead express how much they deviate from a user’s
average rating (ru,i − r̄u,•).

Second, the average rating for a user does not necessarily sit in the mid-
dle of the rating scale {1, 2, 3, 4, 5} and therefore maximum deviations may be
asymmetric in the positive and negative directions. Moreover, the range of de-
viations, in the positive and negative directions, may differ for different users.
The average of many deviations from different users may therefore result in a
larger deviation than the range of some users, leading to an incorrect range, i.e.
< 1 or > 5, when making predictions. We therefore normalize the deviations
such that for all users, their deviations will be in the range [−1, 1] with -1 cor-
responding to a rating of 1 (maximum negative deviation), 1 corresponding to
a rating of 5 (maximum positive deviation), and 0 corresponding to the average
rating for any user.

6The notation conventions used throughout the document are summarized in Appendix A.

3

The normalized deviation (r̂u,i) is therefore the following:

r̂u,i =
ru,i − r̄u,•

scale(ru,i, r̄u,•)
(2)

with a scale specific to a user’s average rating:

scale(x, r̄u,•) =


5− r̄u,• if x > r̄u,•

r̄u,• − 1 if x < r̄u,•

1 if x = r̄u,•

(3)

The global average deviation for an item i (¯̂r•,i) is the average of the devia-
tions for all users on this item (where U(i) is the set of users with a rating for
item i):

¯̂r•,i =

∑
u∈U(i) r̂u,i

|U(i)|
(4)

The prediction of rating for a user u on item i, which converts back the
global average deviation to a numerical rating in the range [1, 5], is then:

pu,i = r̄u,• + ¯̂r•,i ∗ scale((r̄u,• + ¯̂r•,i), r̄u,•) (5)

In the following questions, you will compare the prediction accuracy of this
baseline with simpler methods based on averaging (r̄•,•, r̄u,•, r̄•,i). This will
give you some intuitions about their relative efficacy7. You will also measure the
computation time all four require. This will provide you with some intuitions
about the computing cost increase that comes with better accuracy, between
the four prediction methods of this section as well as those you will implement
later.

3.1 Questions

1. (2 points) Compute and report the global average rating (r̄•,•). Do ratings,
on average, coincide with the middle of the rating scale (3 from the scale
{1, 2, 3, 4, 5})? If not, are they higher or lower on average? By how much?

2. (3 points) Compute the average rating for each user (r̄u,•). Do all users
rate, on average, close to the global average? Check min and max for user
average and assume a difference less than 0.5 is small. Do most users rate,
on average, close to the global average? Calculate and report the ratio of
users with average ratings that deviate with less than 0.5 from the global
average.

7In real-life you should always ensure that simpler methods are not sufficient for the prob-
lem at hand before trying more complex methods, as they are generally much less expensive
and simpler to configure.

4

3. (3 points) Compute the average rating for each item (r̄•,i). Are all items
rated, on average, close to the global average? Check min and max for
item average and assume a difference less than 0.5 is small. Are most
items rated, on average, close to the global average? Calculate and report
the ratio of items with average ratings that deviate with less than 0.5 from
the global average.

4. (8 points) Compare the prediction accuracy (average MAE on ml-100k/u1.test)
of the previous methods (r̄•,•, r̄u,•, r̄•,i) to the proposed baseline (pu,i,
Eq. 5). Report the results you obtained in a table. Discuss the differ-
ence(s) you observed and why you think they occur. For items that do
not have ratings in the training set, use the global average (r̄•,•), instead
of the item-specific average (r̄•,i).

5. (7 points) Measure the time required for computing predictions for all rat-
ings in the test set (ml-100k/u1.text) with all four methods by recording
the current time before and after (ex: with System.nanoTime() in Scala).
The duration is the difference between the two. For all four methods,
perform ten measurements and report in a table the min, max, average,
and standard-deviation. Report also the technical specifications (model,
CPU speed, RAM, OS, language version) of the machine on which you
ran the tests. Which of the four prediction methods is the most expen-
sive to compute? How much more compared to using the global average
rating (r̄•,•)? Calculate and report the ratio between the average time for
computing the baseline (Eq. 5) and the average time for computing the
global average.

3.2 Tips

Debugging numerical programs, such as those of this milestone, can be tricky
because a program will not fail but will instead simply provide incorrect output.
To ensure you have not made mistakes in some steps try the followings:

• Print a few values, as well as statistics (min, max, standard-deviation,
average, distribution of values in a certain range) of results and interme-
diary computations. Especially make sure you do not obtain not-a-number
(nan) values.

• Check that the predictions are in the range [1, 5]. If not there is a problem
in your code.

• The MAE for Eq. 5 should be below 0.80.

Also:

• Scala’s standard library API is not backward compatible between minor
versions (ex: 2.12 may not be compatible with 2.13). Make sure to use
the documentation for the version of the project, as listed in build.sbt.

5

4 Recommendation

To provide recommendations of new movies to user u, you can now simply
compute predictions for which there are no ratings in the dataset8 and keep the
n best:

R(u,n) = top(n, [pu,i|ru,i /∈ Ratings]) (6)

To recommend movies for yourself, use id 944 (the highest user id in the
dataset is 943, so that is one higher than that), and add at least 20 ratings to
the dataset. As the baseline predictions are based on ratings that deviate from
your rating average, make sure to provide a good number of ratings across the
entire range [1, 5]. To make rating more convenient, we have reformatted the
list of movie identifiers and titles in a single CSV file, so that you can provide
your personal ratings in the third column using a spreadsheet program, such as
OpenOffice Calc, Microsoft Excel, or Apple’s Number. You can then process
that CSV file to add your ratings to the dataset.

Notice that the predictions do not take into account the popularity of a
movie, i.e. total number of ratings, into account. The recommender may there-
fore suggests obscure movies seen by few users if they all rated the movie highly.
In the following questions, you will provide your own personal recommendations
and (optionally) suggest one or multiple simple modifications to take into ac-
count the popularity of a movie.

4.1 Questions

1. (2 points) Report your personal top 5 recommendations using the baseline
predictor (Eq. 5), including the movie identifier, the movie title, and the
prediction score. If additional recommendations have the same predicted
value as the top 5 recommendations, prioritize the movies with the small-
est identifiers in your top 5 (ex: if the top 8 recommendations all have
predicted scores of 5.0, choose the top 5 with the smallest ids.) so your
results do not depend on the sorting behaviour. Are these movies you
have actually liked (but did not rate) or would like to see in the future?

2. (Bonus, 3 points) How could you modify the predictions to favour more
popular movies, e.g. by smoothly decreasing the prediction score of movies
with few ratings while keeping the prediction score of those with many
ratings almost identical? Provide the equation(s) of your modifications,
which equations of this document they are intended to replace, and the
new top5 recommendations you obtain for yourself (movie identifier, movie
title, prediction score).

8We are assessing the quality of recommendations subjectively rather than objectively
(”ground truth” is our personal judgement), therefore we are using the entire dataset for
predictions. If we were assessing the quality of recommendations using an objective metric,
we would again use disjoint train and test sets.

6

4.2 Tips

• Check that the prediction scores for the recommended items are indeed
close to 5.

• Strictly speaking, when using the baseline method, the only required num-
ber for making predictions for yourself is your average rating on many
movies. (Predictions should also only be made for items not already
rated.) It may therefore seem superfluous to add your own ratings to
the dataset since your ratings do not interact with those of others for pre-
dictions. ”Adding your ratings to the dataset” prepares you for Milestone
2, which will require similarities between you and other users, based on
ratings, to be computed prior to making predictions.

5 Deliverables

You can start from the latest version of the template:

• Zip Archive: https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/
cs449-Template-M1/-/archive/master/cs449-Template-M1-master.zip

• Git Repository:

git clone

https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1.

git

We may update the template to clarify or simplify some aspects based on student
feedback during the semester, so please refer back to https://gitlab.epfl.

ch/sacs/cs-449-sds-public/project/cs449-Template-M1 to see the latest
changes.

Provide answers to the previous questions in a report. Also, provide your
source code (in Scala) and your personal movie ratings in a single archive:

CS449-YourID-M1/

README.md

report-YourID-M1.pdf

build.sbt

data/personal.csv

project/build.properties

project/plugins.sbt

src/main/scala/stats/Analyzer.scala

src/main/scala/predict/Predictor.scala

src/main/scala/recommend/Recommender.scala

As well as any other packages or source files you have created. Remove
all other unnecessary folders (ex: project/project, project/target, and

7

https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1/-/archive/master/cs449-Template-M1-master.zip
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1/-/archive/master/cs449-Template-M1-master.zip
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1.git
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1.git
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1

target). Ensure your project automatically and correctly downloads the miss-
ing dependencies and correctly compile from only the files you are providing. En-
sure the statistics.json, predictions.json, and recommendations.json

files are re-generated correctly using the commands listed in README.md. If in
doubt, refer to the README.md file for more detail.

Once you have ensured the previous, remove again all unnecessary folders,
as well as the dataset (data/ml-100k and data/ml-100k.zip, if present), zip
your archive (CS449-YourID-M1.zip). Your archive should be around or less
than 1MB. Submit to the TA using the submission URL of the first page of this
Milestone.

6 Grading

We will use the following grading scheme:

Points
Questions 25
Source Code Quality & Organisation 5
Bonus 3
Total 30

Any bonus point (total over 30) will be reported on future Milestones. Points
for ’Source Code’ will reflect how easy it was for the TA to run you code and
check your answers. Grading for answers to the questions without accompanying
executable code will be 0.

6.1 Collaboration vs Plagiarism

You are encouraged to help each other better understand the material of the
course and the project by asking questions and sharing answers. You are also
very much encouraged to help each other learn the Scala syntax, semantics,
standard library, and idioms and Spark’s Resilient Distributed Data types and
APIs. It is also fine if you compare answers to the questions before submitting
your report and code for grading. The dynamics of peer learning can enable the
entire class to go much further than each person could have gone individually,
so it is very welcome.

However, you should write the report and code individually. You should
also compare answers only after having attempted the best shot you can do alone,
well ahead of the deadline, and after doing your best to understand the material
and hone your skills. The main reason is pedagogical: we have done our best
to prepare a project that removes much of the accidental complexity of the
topic, would be much more accessible than learning directly from the research
literature, and would be deeper and more balanced than marketing material for
the latest technologies. But for that pedagogical experience to give its fruits,
you have to put enough efforts to have it grow on you.

8

To make grading simpler and scalable, so you will have feedback in a timely
manner, we have opened the possibility to short-cutting the entire learning
process and go for maximal grade with minimal effort. If you do so, you will
not only completely waste a great personal opportunity to develop useful skills,
you will lower the reputation of an EPFL education for all your colleagues,
and you will be wasting the resources Society is collectively investing in your
education. So we will be remorseless and drastically give 0 to all submissions
that are copies of one another.

7 Updates

Since the original release of the Milestone description on February 23rd, we have
made the following changes:

• Clarified question 3.1.4 to mention that the item-specific average, when no
rating are in the training set, should be the global average. Prompted by
Dhruti’s question (https://moodle.epfl.ch/mod/forum/discuss.php?
d=53854#p110066).

• Clarified notation for r̄•,• in Appendix A. Prompted by Mustapha’s ques-
tion (https://moodle.epfl.ch/mod/forum/discuss.php?d=54597#p111305).

• Clarified measurements should be made for computing predictions for all
items in the test set in question 3.5. Prompted by Raphael’s question
(https://moodle.epfl.ch/mod/forum/discuss.php?d=54569#p111259).

• Clarified Recommendation (Section 4): removed references to Train sets
since we are using the entire dataset for making predictions; clarified that
we can do this because we are using a subjective assessment; and clarified
why you are asked to add your ratings to the dataset. Prompted by a
private email from Alexander Olsson.

• Removed the scala/ prefix for the source code in the deliverable. Prompted
by a question from Karim (https://moodle.epfl.ch/mod/forum/discuss.
php?d=55151#p112334).

References

[1] Harper, F. M., and Konstan, J. A. The MovieLens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems 5, 4 (Dec.
2015), 19:1–19:19.

[2] Herlocker, J., Konstan, J. A., and Riedl, J. An empirical analysis
of design choices in neighborhood-based collaborative filtering algorithms.
Information retrieval 5, 4 (2002), 287–310.

[3] Karydi, E., and Margaritis, K. Parallel and distributed collaborative
filtering: A survey. ACM Comput. Surv. 49, 2 (Aug. 2016).

9

https://moodle.epfl.ch/mod/forum/discuss.php?d=53854#p110066
https://moodle.epfl.ch/mod/forum/discuss.php?d=53854#p110066
https://moodle.epfl.ch/mod/forum/discuss.php?d=54597#p111305
https://moodle.epfl.ch/mod/forum/discuss.php?d=54569#p111259
https://moodle.epfl.ch/mod/forum/discuss.php?d=55151#p112334
https://moodle.epfl.ch/mod/forum/discuss.php?d=55151#p112334

[4] Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web (2001), pp. 285–295.

A Notation

• u and v: users identifiers

• i and j: items identifiers

• r̄•,•: global average (over all users and items) (1
|Ratings|

∑
ru,i∈Ratings ru,i)

• r̄u,•: average rating for user u, over all items (1
|I(u)|

∑
i∈I(u) ru,i)

• r̄•,i: average rating for item i, over all users (1
|U(i)|

∑
u∈U(i) ru,i)

• r̂u,i: deviation from the average r̄u,•

• ru,i: rating of user u on item i, (u is always written before i)

• pu,i: predicted rating of user u on item i

• |X|: number of items in set X

• ∗: scalar multiplication

• ru,i, rv,i ∈ Train: both ru,i and rv,i are elements of Train for the same i

• 1x: indicator function,

{
1 if x is true

0 otherwise

• u, v ∈ U : shorthand for ∀u ∈ U,∀v ∈ U

• R(u, n): top n recommendations for user u as a list

• sorted↘(x): sort the list x in decreasing order

• [x|y]: create a list with elements x such that y is true for each of them

• top(n, l): return the highest n elements of list l

• U : set of users

• I: set of items

• U(i): is the set of users with a rating for item i ({u|ru,i ∈ Train})

• I(u): is the set of items for which user u has a rating ({i|ru,i ∈ Train})

10

	Motivation: Movie Recommender
	Dataset: MovieLens 100K

	Proxy Problem: Predicting Ratings
	Baseline: Prediction based on Global Average Deviation
	Questions
	Tips

	Recommendation
	Questions
	Tips

	Deliverables
	Grading
	Collaboration vs Plagiarism

	Updates
	Notation

