
CS-449 Project Milestone 2: Optimizing, Scaling,

and Economics

Motivation and Outline: Anne-Marie Kermarrec
Detailed Design, Writing, Tests: Erick Lavoie

Teaching Assistant: Mu Zhou
Last Updated: 2022/04/15 12:29:41 +02’00’

Due Date: 20-05-2022 23:59 CET
Submission URL: https://cs449-sds-2022-sub.epfl.ch:8083/m2

General Questions on Moodle

Personal Questions: mu.zhou@epfl.ch

Abstract

In this milestone, you will parallelize the computation of similarities
by leveraging the Breeze linear algebra library for Scala, e↵ectively using
more e�cient low-level routines. You will also measure how well your
Spark implementation scales when adding more executors. You will also
implement a version of approximate k-NN that could be useful in very
large datasets. You will finally compute economic ratios to help you choose
the most appropriate infrastructure for your needs.

1 Motivation: Growing Pains

Your movie recommendation service is growing in number of users and movies
rated, beyond the hobby side project you had started with. As your service is
growing, the time to compute the k-nearest neighbours is growing also. If left
unchecked, this may exceed the time your users are willing to wait to obtain
high-quality suggestions.

In this last Milestone you are going to keep computation time within rea-
sonable bounds in two steps: (1) you will first optimize your implementation for
a single executor, with potential to lower the computation time to less than 3s,
which might be a more than a 10x improvement compared to your implemen-
tation of Milestone 1 (you will do so in Section 3); (2) you will parallelize the
execution of both the k-NN implementation and the predictions with Spark,
using simple parallelization methods (Section 4). The optimization will keep
your technical requirements lower, and the scaling will enable you follow the
growth of your users easily. You will also explore the potential for approximate

1

k-NN methods (Section 5).
As your service is growing, so does the cost of the infrastructure you are

using. As a practice for anticipating the costs of future infrastructure, and
choosing the least costly options, you will compute a few simple economic ra-
tios to compare some currently available options for the supporting hardware
infrastructure (Section 6).

After completing this Milestone and the project, you will have had a ba-
sic but complete experience in implementing useful data analytics algorithms,
measuring and analyzing their computing time, optimizing their performance
both on a single machine and in a distributed fashion, and planning required
resources for future growth. You should therefore have a good foundation for
pursuing a research career in distributed systems, doing more advanced devel-
opment on real-world infrastructure, as well as leading a technical team in a
startup.

2 Dataset

For the optimization part of this milestone, you will again use the MovieLens
100K dataset [4]. Again, for the sake of simplicity, you will only test on the
ml-100k/u2.test dataset (with the corresponding ml-100k/u2.base). This
will enable you to evaluate performance gains compared to your implementation
of Milestone 2.

For the scaling part of this milestone, you will use the 1M dataset, which
should be more challenging than the 100K but still has a reasonable computa-
tion time. The original dataset can be found here:

https://grouplens.org/datasets/movielens/1m/

However, the 1M dataset does not provide pre-split training and test sets, as
the 100K, so the scripts of the 10M dataset are used to split the ratings into a
ml-1m/rb.train and ml-1m/rb.test datasets. For your convenience, the pre-
split dataset has been added to the zip archive data-m2.zip here:

https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/dataset

As for the 100K dataset, in a real-life setting you would test on multiple
splits of the dataset to ensure your results are not specific to one split and most
likely generalize. But for the sake of the pedagogical exercise, it will be su�cient
to only test on the ml-1m/rb.train and ml-1m/rb.test split.

The minimum rating value of ml-100k and ml-1m is 1.0 in both cases, so no
need to worry about ratings having a value of 0.5 as in Milestone 1.

2

3 Optimizing with Breeze, a Linear Algebra Li-

brary

Before throwing more computing resources at the problem, e.g. Spark Executors
running on additional cluster machines, it is always worth verifying whether a
single machine would actually be su�cient for the task. In some cases, as is
the case for your recommender, a drastic reduction in computation time can be
achieved with slightly di↵erent, but mathematically equivalent, implementation
techniques.

As far as we are aware of, Scala does not o↵er complete, e�cient, and ma-
ture linear algebra libraries. The Breeze library1 does however come somewhat
close on a subset of operations and datatypes. Breeze is the recommended inter-
face for Scala/Spark to the underlying netlib-java library2, itself a wrapper for
low-level linear algebra libraries such as BLAS and LAPACK, that is used inter-
nally by the Spark mllib library. In this section, you will therefore use Breeze
directly to reimplement the prediction algorithm of Milestone 1 and measure
the speedup you can obtain. With relatively simple implementation techniques,
you should be able to bring the running time within 3 seconds. Depending on
how you implemented the previous Milestone, this might potentially o↵er a 10x
reduction in computation time. Such a reduction can directly translate in a 10x
reduction in the number of executors required to obtain the same computation
time, potentially more depending on the overhead of RDD libraries and their
parallelization behaviour.

Note that to best leverage a linear algebra library, your implementation
should compute all k-nearest neighbours prior to making predictions, instead
of lazily based on which predictions to make, as the RDD API might have
encouraged you to do previously. You will notice that the speed up you obtain
this way stays quite large even if you are actually computing more similarities
than previously.

Note also that, although teaching additional programming environments is
outside of the scope of the course, the techniques introduced in this section
provide even better performance gains when used in Numpy (with Python) due
to more complete and mature numerical libraries, and could also be integrated
in Spark. This could be an additional valid option for your future projects.

3.1 Overview of some Breeze Operations

Unfortunately, the breeze library has been on minimal maintenance mode for
a couple of years3 and the documentation is somewhat lacking4. To get you

1https://github.com/scalanlp/breeze
2https://github.com/fommil/netlib-java
3https://github.com/scalanlp/breeze/commits/master
4
This is no fault of the author, as the library does quite a lot as a labor of (volunteer)

love, and as such is already quite an accomplishment. This highlights the issue of funding to

maintain core open source infrastructure. If you ever work for a company that makes money

using open source software, do remember to pay the benefits forward and sustain the open

3

started, here is an overview of some operations we found useful in our reference
implementation.

For all of them you should first import:

import breeze.linalg._
import breeze.numerics._

3.1.1 Dense Vector and Matrix

If all the data can fit in memory, the most e�cient numerical operations are
usually based around the DenseVector and DenseMatrix data types. There is
a fairly comprehensive library for linear algebra, which supports e�cient slicing,
element-wise operations, and matrix multiplication. The set of operations and
their equivalence in other numerical languages is listed here: https://github.
com/scalanlp/breeze/wiki/Linear-Algebra-Cheat-Sheet.

When working with the ml-100k/u2.base dataset, a DenseMatrix can easily
fit all the ratings in memory, even if they are sparse compared to users ⇤ items.
Prefer a sparse matrix anyway since it makes it easier to try larger datasets
with the same implementation, as you will have to do in the next question.

3.1.2 Sparse Matrix

If a matrix, e.g. user-item ratings, does not fit in memory using a DenseMatrix,
as is necessarily the case for the largest MovieLens datasets, you can use a
SparseMatrix representation. The Breeze library only supports the Com-
pressed Sparse Column (CSC) format5. Here is a summary of operations you
might find useful.

Creation
You can e�ciently create a CSCMatrix with the CSCMatrix.Builder as fol-

lows:

val builder = new CSCMatrix.Builder[Double](rows=943, cols=1682)
builder.add(row, col, value)
...
val x = builder.result()

The template already does this for the ratings, both for training and testing.

Slicing
You can obtain a SliceVector of rows i to j of column m with x(i to j,

m) or a SliceMatrix of row i to j of columns m to n with x(i to j, m to
n). Note that if you slice to obtain a single row i between columns m and n
you will obtain a ”transposed” vector, which you may have to transpose again

source commons by funnelling some funding towards the projects you depend on.
5
See Wikipedia for an overview of other formats: https://en.wikipedia.org/wiki/

Sparse_matrix

4

for some operations as they may not support the transposed version. Note
also that the :: operator (ex: x(i, ::)), which provides all elements along
the corresponding dimension, is not supported on SparseMatrix. You have to
explicitly provide a range i to j for that dimension.

Iteration
You can e�ciently iterate through all non-zero elements of a CSCMatrix

matrix x with:

for ((k,v) <- x.activeIterator) {
val row = k._1
val col = k._2
// Do something with row, col, v

}

Matrix multiplication
You can multiply matrix x by matrix y (both can also be slices with compat-

ible dimensions) with x * y. You can use it to implement the su,v computation
with pre-processed ratings of Milestone 2:

su,v =
X

i2(I(u)\I(v))

r̆u,i ⇤ r̆v,i (1)

Matrix-Vector multiplication
As an alternative to matrix multiplication, you can also do a series of matrix-

vector multiplication, extracting individual rows or columns of another matrix.
When using this approach, you have to figure out if it is best to assign users to
rows and items to columns of a CSCMatrix (or the opposite!) when preparing
the r̆u,i sparse matrix.

Reduction
The reduction along a given dimension, such as performing a sum(x, Axis. 1)

is not supported. You can either explicitly create a DenseVector with the cor-
rect size for that dimension then iterate through all active (non-zero) elements
as shown above. You can also do a matrix multiplication: for a matrix X, you
can reduce the columns by multiplying Xm,n ⇤ 1n,1 or the rows by multiplying
11,m ⇤Xm,n, where 11,n is an n-by-1 matrix of all 1 and 11,m is a 1-by-m matrix
of all 1. Either options are useful for pre-processing the ratings, i.e. computing
r̆u,i, prior to computing su,v, you will have to measure which one is fastest.

top-k elements
You can find the indices of the top k elements of a (non-transposed) SliceVector

s with argtopk(s, k) and iterate through them with:

for (i <- argtopk(s,k)) {

5

// do something with s(i)
}

It can sometimes be faster to call argtopk with a DenseVector instead of a
SliceVector. You will have to measure whether this is significant.

Element-wise operations
Many element-wise operations and boolean operations from https://github.

com/scalanlp/breeze/wiki/Linear-Algebra-Cheat-Sheet are supported on
CSCMatrix. Unsupported operations will result in compilation errors. You can
quickly and interactively identify and test those that are supported with sbt
console on a small test CSCMatrix, which you may create as such:

> val x = CSCMatrix[Double]((1.0, 2.0, 3.0), (4.0, 5.0, 0.0))
// x.<tab> for autocompletion of supported operations

Others
See https://github.com/scalanlp/breeze/blob/06b23cfa837c53e025bb70f0f4bc1f241986d0ba/

math/src/test/scala/breeze/linalg/CSCMatrixTest.scala for example us-
age of other supported operations on CSCMatrix.

3.2 Questions

BR.1 Reimplement the kNN predictor of Milestone 1 using the Breeze library
and without using Spark. Using k = 10 and data/ml-100k/u2.base for
training, output the similarities between: (1) user 1 and itself; (2) user
1 and user 864; (3) user 1 and user 886. Still using k = 10, output the
prediction for user 1 and item 1 (p1,1), the prediction for user 327 and
item 2 (p327,2), and make sure that you obtain an MAE of 0.8287±0.0001
on data/ml-100k/u2.test.

BR.2 Try making your implementation as fast as possible, both for computing
all k-nearest neighbours and for computing the predictions and MAE on
a test set. Your implementation should be based around CSCMatrix, but
may involve conversions for individual operations. We will test your im-
plementation on a secret test set. The teams with both a correct answer
and the shortest time will receive more points.

Using k = 300, compare the time for predicting all values and com-
puting the MAE of ml-100k/u2.test to the one you obtained in Mile-
stone 1. What is the speedup of your new implementation (as a ratio
of average timeold

average timenew
)? Use the same machine to measure the time for both

versions and provide the answer in your report.

Also ensure your implementation works with data/ml-1m/rb.train and
data/ml-1m/rb.test since you will reuse it in the next questions.

6

3.3 Tips

1. User and movie indexes start at 1 in the movielens dataset, but the
CSCMatrix implementation is 0-indexed. If you map user 1 to index 0,
make sure that all your operations take into account the di↵erence.

2. Idem if you decide to map users to columns instead of rows of the CSCMatrix.

3. For any kind of optimization work, always make sure to first have a correct
(and often simpler) implementation to compare against, to ensure your
optimizations do not a↵ect the correctness of the results. As you develop,
compare the answers for both and ensure their answers stay the same.
Your implementation of Milestone 1 can serve for this.

4. Prior to optimizing, make sure to measure how long each part of your
program takes. Our intuitions of what is fast and slow is (most) often
wrong, so always measure first to focus you attention on the parts that
matter most.

5. Always tackle the slowest parts first, then move to the others. As you
optimize, the bottlenecks, i.e. the parts that slow your program the most,
will change.

6. Optimization work can be addictive. It also su↵ers from diminishing re-
turns, i.e. the biggest gains can be obtained with relatively little work but
further gains will take increasingly larger amounts of work. For the sake
of the project, we are aiming for a 10x reduction in computation time for
both the k-NN computations and the prediction time. If your implemen-
tation of Milestone 1 was already quite fast, you may not easily obtain a
10x reduction, that is fine.

4 Parallel k-NN Computations with Replicated

Ratings

In a real-world setting, your number of users may outgrow the capabilities of a
single machine, even after extensive optimization work. In that case, distribut-
ing the execution on multiple machines allows your implementation to grow with
the number of users. We will focus on parallelizing k-NN and predictions.

You will first use a simple parallelization strategy in which every worker
(Spark executor) will obtain a copy of the input data and compute di↵erent
parts of the output. The distribution of the shared input data is done e�ciently
with Spark’s broadcast variables.

Workers will compute the top k users for di↵erent subsets of users. The
results are then reassembled on the driver node in a sparse k-NN CSCMatrix.
A high-level presentation of the parallelization strategy is given in Algorithm 1.

7

Algorithm 1 Parallel k-NN Computations with Replicated Ratings (Spark)

1: Input r•,• (ratings), sc (SparkContext), k (number of nearest neighbours)
2: r̆•,• preprocess(r•,•) . Similar to Milestone 2
3: br sc.broadcast(r̆•,•)
4: procedure topk(u)
5: r̆•,• br.value . Retrieve broadcast variable
6: su,• sim(u, r̆•,•) . Similarities
7: return (u, argtopk(su,•, k).map(v ! (v, su,v))) . Compute k-NN for

user u
8: end procedure
9: topks sc.parallelize(0 to nb users).map(topk).collect()

10: knn knnBuilder(topks) . Using the CSCMatrix.Builder
11: return knn

4.1 Questions

In the following questions, you will ensure this distributed version gives the same
results you obtained previously and assess its scalability and resource usage.

EK.1 Test your parallel implementation of k-NN for correctness with two work-
ers. Using k = 10 and data/ml-100k/u2.base for training, output the
similarities between: (1) user 1 and itself; (2) user 1 and user 864; (3) user
1 and user 886. Still using k = 10, output the prediction for user 1 and
item 1 (p1,1), the prediction for user 327 and item 2 (p327,2), and make sure
that you obtain an MAE of 0.8287± 0.0001 on data/ml-100k/u2.test

EK.2 Measure and report the combined k-NN and prediction time when us-
ing 1, 2, 4 workers, k = 300, and ml-1m/rb.train for training and
ml-1m/rb.test for test, on the cluster (or a machine with at least 4
physical cores). Perform 3 measurements for each experiment and report
the average and standard-deviation total time, including training, making
predictions, and computing the MAE. Do you observe a speedup? Does
this speedup grow linearly with the number of executors, i.e. is the run-
ning time X times faster when using X executors compared to using a
single executor? Answer both questions in your report.

4.2 Tips

1. Use the following command to vary the number of executors on the IC-
Cluster (once connected on the iccluster028.iccluster.epfl.ch driver
node): spark-submit --master yarn --num-executors X
--conf "spark.dynamicAllocation.enabled=false" ... where X is
the number of executors to use.

8

5 Distributed Approximate k-NN

Up to now, we have aimed at obtaining the same results in a distributed im-
plementation of k-NN as for a centralized. For some applications, obtaining
the k best, i.e. most similar, neighbours for every user is not necessary. As
long as the k found are similar enough, this is su�cient. This relaxation en-
ables the user ratings to be partitioned among multiple workers, with possible
repetitions, and a divide-and-conquer approach to be used: local k-NNs are
computed within each partition, ignoring users from other partitions, and the
most similar across partitions will be kept. This approach increases the total
number of ratings that can be held in memory, by only storing a subset on each
worker, and decreases the time required for computing the k-NN, by avoiding
most similarity computations.

However, the quality of the final approximate k-NN, i.e. how similar the
k nearest neighbours are to any user, is greatly impacted by the initial parti-
tioning of the ratings. For example, if users u and v, who are most similar to
one another than all other users, end up in di↵erent partitions, they won’t be
considered for the k-NN and less similar neighbours will be used instead. It is
therefore important to quantify the similarity lost by approximation, and its
impact on predictions, to ensure the personalized recommender still provides
better predictions than if a simpler and faster method had been used. In the
next questions, you will implement and evaluate a simple random partitioning
scheme6 and quantify such tradeo↵s.

5.1 Questions

AK.1 Implement the approximate k-NN using your previous breeze implemen-
tation and Spark’s RDDs. Using the partitioner of the template with
10 partitions and 2 replications, k = 10, and data/ml-100k/u2.base for
training, output the similarities of the approximate k-NN between user 1
and the following users: 1, 864, 344, 16, 334, 2.

AK.2 Vary the number of partitions in which a given user appears. For the
data/ml-100k/u2.base training set, partitioned equally between 10 work-
ers, report the relationship between the level of replication (1,2,3,4,6,8)
and the MAE you obtain on the data/ml-100k/u2.test test set. What is
the minimum level of replication such that the MAE is still lower than the
baseline predictor of Milestone 1 (MAE of 0.7604), when using k = 300?
Does this reduce the number of similarity computations compared to an
exact k-NN? What is the ratio? Answer both questions in your report.

AK.3 Measure and report the time required by your approximate k-NN imple-
mentation, including both training on data/ml-1m/rb.train and com-
puting the MAE on the test set data/ml-1m/rb.test, using k = 300 on

6
More sophisticated methods, such as Cluster-and-Conquer [3], can provide good parti-

tioning at reasonable computation costs. If you are interested in delving in such methods, ask

for a semester project with the SaCS lab.

9

8 partitions with a replication factor of 1 when using 1, 2, 4 workers.
Perform each experiment 3 times and report the average and standard-
deviation. Do you observe a speedup compared to the parallel (exact)
k-NN with replicated ratings for the same number of workers?

6 Economics

You have seen that the optimizations of Section 3 may translate in lower needs
for additional hardware. In this section, you will quantify the economics of
buying/renting hardware to execute your recommender. You will, in the process,
obtain insights into the economic benefits of optimization.

These days, you have many choices of hardware infrastructure. The land-
scape and particular tradeo↵s of each point, are too broad to cover in this
project. But since it may a↵ect some design decisions, let’s quickly review three
representative examples of currently available hardware, summarized in Table 1,
and provide some context in which they may be useful.

Hardware RAM CPU Buying Renting/Operating
Costs Costs

ICC.M7
24x64GB
DDR4
-2666

2x Intel Xeon
Gold 6132
(Skylake)
2x 14 cores,
2.6 GHz,
19.25 MB
L3 cache

(none)
(renting)
20.40CHF/day

Containers Unspec. Unspec. (none)

(renting)
1 GB-s:
1.6e�7CHF/s

1 vCPU-s:
1.14e�6CHF/s

RPi 4
Compute
Module

8GB
LPDDR4
-3200
SDRAM

Broadcom
BCM2711
quad-core
Cortex-A72
ARMv8 64-bit
SoC@1.5GHz

108.48CHF7

Power:
3W (idle) -
4W (computing)8

Energy cost:
0.25CHF/kWh9

+ Maintenance

Table 1: Technical specifications and cost of IC IT cloud o↵erings, compared
to the highest performing Raspberry Pi available in 2021, a cheap and widely
available consumer computing device.

10

First, you may choose not to distribute your similarity computations and
instead replace your re-purposed desktop machine, with a more powerful one,
i.e. with increased RAM and better processor performance. One representative
example is a powerful server. For example, the server in the IC IT Cluster with
the largest amount of main memory, at 1.5TB of RAM, is listed in Table 1. The
main advantage of this approach is that you don’t have to change your software
implementation, which sometimes is not possible because your particular algo-
rithms are not easily distributed, and other times might be too complex for the
skills or development time you currently have. However, the main drawback is
that higher-end machines are usually more expensive because they are produced
in lower volumes and sold at higher margins. The running costs at idle are also
higher because all the added circuitry needs to be powered, even if not used.

Second, if your algorithms can be distributed, which fortunately is the case
for k-NN [6, 5], you may elect to distribute them on virtualized cloud infras-
tructure. Today’s cloud providers have many virtualization o↵erings, with one
example based on containers, i.e. isolated processes running within the same
operating system. Virtualization makes available the underlying hardware at a
finer granularity, e.g. per CPU per second, as listed in the second line of Ta-
ble 1. The main advantages of virtualized cloud o↵erings are potentially reduced
maintenance costs, as the maintenance of the hardware is centralized and shared
between multiple cloud users, and o✏oading the risks associated with under-
or over-provisioning hardware infrastructure compared to actual business needs
(you only pay what you use). However, if the actual maintenance costs for some
applications are low, and computing needs are stable and foreseeable, the cost of
acquiring hardware may actually be recouped in a few years. Moreover, if user
data is subject to stringent privacy limitations, it may sometimes not be possi-
ble to process it in a cloud (although there are plenty of ongoing research and
industrial developments aiming to provide better privacy guarantees). Also, the
electronic waste, carbon emissions, and energy usage, of cloud providers may be
higher than what you could obtain with privately-operated infrastructure [2].

Third, you may distribute your algorithms on hardware you acquire and
maintain yourself, by favouring cheap, energy-e�cient, and widely available
commodity hardware, an approach that was pioneered by Google in 1998. For
example, the highest performing Raspberry Pis are increasingly closing the gap
with Desktop and Server performance at a really low price point. The specifi-
cation and costs, as of March 2022, are listed in the third line of Table 1. While
there is still a significant gap in performance with the most powerful hardware
of today, RaspberryPi 4 Compute Modules are on par or more powerful than
the servers used by Google in 2005, are more energy e�cient by a factor of 4-5x,
and probably less expensive by a factor at least 4-5x [1]! They provide the same
advantages as Hardware-as-a-Service, in having full access to the hardware and

7
From EUR to CHF, as listed here (Mar. 10th 2022) https://buyzero.de/products/

compute-module-4-cm4?variant=32090358612070&src=raspberrypi
8https://www.epfl.ch/labs/sacs/wp-content/uploads/2022/03/andre_bachelor_

thesis_final.pdf
9
Swissgrid Tari↵s (2022)

11

their operating costs (when only taking electricity into account) are lower than
equivalent virtualized o↵erings for the same performance. Moreover, private
data never leaves the organization, the hardware can be used for longer than
the typical 2-3 years turn-around time of cloud servers (lowering e-waste and
grey energy), and they can be setup to operate on renewable energy at rea-
sonable costs [2]. However, setting up the infrastructure and maintaining the
software up-to-date requires labor time, which may more than o↵set the lower
operating costs. They also have higher initial costs compared to cloud o↵erings,
but, given the low price of individual devices, that cost may be spread over time
and engaged as computing needs grow.

The following questions will help you acquire or rent the right amount of
hardware resources for your current and future needs.

6.1 Questions

For the following questions, make the following assumptions10:

• Throughput of 1 single Intel CPU physical core (vCPU) ⇡ 4 Raspberry
Pis 4, (16 Cortex-A72 cores total) 11

• Buying a machine equivalent to the ICC.M7 costs 38,600 CHF (based
on a 41,500$USD quote from the Dell website in the US, created on Mar.
10th 2022)

Compute your answers to the following questions with code (see the tem-
plate):

E.1 What is the minimum number of days of renting to make buying the
ICC.M7 less expensive, excluding any operating costs such as electricity
and maintenance? Round up to the nearest integer.

E.2 After how many days of renting a container, is the cost higher than buy-
ing and running 4 Raspberry Pis? (1) Assuming optimistically no main-
tenance at minimum power usage for RPis, and (2) no maintenance at
maximum power usage for RPis, to obtain a likely range. (Round up to
the nearest integer in each case).

Assume a single processor for the container and an equivalent amount of
total RAM as the 4 Raspberry Pis. Also provide unrounded intermediary
results for (1) Container Daily Cost, (2) 4 RPis (Idle) Daily Electricity
Cost, (3) 4 RPis (Computing) Daily Electricity Cost.

10
For real deployments, you would have to empirically verify these assumptions, and revise

them as the application, the landscape of hardware o↵erings, and your software implementa-

tion evolve.
11
Rough estimate based on the performance of the more recent Intel Xeon E3-1230

v6, which has 4 cores instead of 14, on the following benchmark: https://truebench.
the-toffee-project.org/. Note that the Intel cores have hyper-threading, which doubles

some of hardware to obtain twice the number of virtual CPUs and is clocked almost twice

higher, so the actual performance per ARM core is actually much better than it may seem at

first sight.

12

E.3 For the same buying price as an ICC.M7, how many Raspberry Pis can
you get (floor the result to remove the decimal)? Assuming perfect scaling,
would you obtain a larger overall throughput and RAM from these? If so,
by how much? Compute the ratios using the previous floored number of
RPis, but do not round the final results.

Implement the computations for the di↵erent answers in the Economics.scala
file. You don’t need to provide unit tests for this question, nor written answers
for these questions in your report.

6.2 Tips

1. Write down the full equation with units for every term when calculating
ratios.

7 Deliverables

You can start from the latest version of the template:

• https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M2-2022/

Wemay update the template to clarify or simplify some aspects based on student
feedback during the next weeks, so please refer back to see the latest changes.

Provide answers to the previous questions in a pdf report (if your document
saves in any other format, export/print to a pdf for the submission). Also,
provide your source code (in Scala) in a single archive:

report.pdf
src/*

Your archive should be around or less than 1MB. Submit to the TA using
the submission URL of the first page of this Milestone.

8 Grading

You will be graded both on the question answers, and source code quality as well
as organization. Points for source code will reflect how easy it was for the TA
to run your code and check your answers. Grading for answers to the questions
without accompanying executable code will be 0.

8.1 Collaboration vs Plagiarism

You are encouraged to help each other better understand the material of the
course and the project by asking questions and sharing answers. You are also
very much encouraged to help each other learn the Scala syntax, semantics,
standard library, and idioms and Spark’s Resilient Distributed Data types and
APIs. It is also fine if you compare answers to the questions before submitting

13

your report and code for grading. The dynamics of peer learning can enable the
entire class to go much further than each person could have gone individually,
so it is very welcome.

However, each team should write their own original report and code. We
will give 0 to all submissions that are copies of one another from this year, and
also 0 to copies of previous years’ submissions.

9 Updates

Since the original release of the Milestone description, we have made the follow-
ing changes:

• None, yet!

References

[1] Google machine. https://google-services.blogspot.com/2006/07/
google-machine.html, 2006. Accessed: 2021-01-21.

[2] De Decker, K. Low-tech magazine: Solar-powered website. https://
solar.lowtechmagazine.com/about.html, 2019. Accessed: 2021-01-21.

[3] Giakkoupis, G., Kermarrec, A.-M., Ruas, O., and Täıani, F.
Cluster-and-Conquer: When Randomness meets Graph Locality. In 2021
IEEE 37th International Conference on Data Engineering (ICDE) (2021),
IEEE, pp. 2027–2032.

[4] Harper, F. M., and Konstan, J. A. The MovieLens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems 5, 4 (Dec.
2015), 19:1–19:19.

[5] Karydi, E., and Margaritis, K. Parallel and distributed collaborative
filtering: A survey. ACM Comput. Surv. 49, 2 (Aug. 2016).

[6] Schelter, S., Boden, C., and Markl, V. Scalable similarity-based
neighborhood methods with mapreduce. In Proceedings of the Sixth ACM
Conference on Recommender Systems (New York, NY, USA, 2012), RecSys
’12, Association for Computing Machinery, p. 163–170.

A Notation

• u and v: users identifiers

• i and j: items identifiers

• r̄•,•: average over a range, with • representing all possible identifiers,

either users, items, or both (ex: r̄•,i, r̄u,•, r̄•,•), ex: r̄u,• =
P

ru,i2Train ru,i
P

ru,i2Train 1

14

• r̂u,i: deviation from the average r̄u,•

• ru,i: rating of user u on item i, (u is always written before i)

• pu,i: predicted rating of user u on item i

• |X|: number of items in set X

• ⇤: scalar multiplication

• ru,i, rv,i 2 Train: both ru,i and rv,i are elements of Train for the same i

• 1x: indicator function,

(
1 if x is true

0 otherwise

• u, v 2 U : shorthand for 8u 2 U, 8v 2 U

• R(u, n): top n recommendations for user u as a list

• sorted&(x): sort the list x in decreasing order

• [x|y]: create a list with elements x such that y is true for each of them

• top(n, l): return the highest n elements of list l

• U : set of users

• I: set of items

• U(i): is the set of users with a rating for item i ({u|ru,i 2 Train})

• I(u): is the set of items for which user u has a rating ({i|ru,i 2 Train})

15

B Pedagogical Notes

In this appendix, we explain why we structured the Milestones as they are. This
is not necessary to complete the Milestone successfully but might be of interest
for future revisions and curious students. Among other goals, the entire project
aims to:

• Develop the skills required to implement and optimize variations of a data
science algorithms locally and in a distributed manner;

• Understand how k-NN fits in a recommender application, and how it re-
lates in performance and accuracy to other similar methods;

• Understand the methodology to build reliable distributed applications in
a step-wise fashion;

• Compare the benefits and costs of distributed and non-distributed ap-
proaches to find where each is most applicable;

• Develop the skills to choose the most a↵ordable infrastructure for di↵erent
operation contexts.

Moreover, for the previous sections, here are specific goals:

B.1 Optimizing with Breeze

Progression : Optimize k-NN locally on a single machine

Skills : Leverage hardware parallelism and faster vectorized instructions through
a linear algebra library

Methodology : Measure speedups

Knowledge : Reformulate parallel operations as matrix algebra

Evaluate : Programming skills for fast code with Breeze

B.2 Parallel Exact k-NN

Progression : Parallelize k-NN

Skills : Implement parallel k-NN with Spark

Methodology : Measure speedups

Knowledge : Impact of increasing the number of workers

Evaluate : Programming skills with Spark

16

B.3 Distributed Approximate k-NN

Progression : Relax accuracy for potential further performance gains

Skills : Implement approximate k-NN with Spark

Knowledge : Impact of the number of partitions and replication factor on accuracy

Evaluate : Programming skills with Spark

B.4 Economics

Progression : Step back from implementation, and consider the wider economic exe-
cution context

Skills : Compute ratios to decide when renting or owning is preferable

Knowledge : Compare the relative benefits and costs of widely available consumer
devices to other alternatives

Evaluate : Computing of simple ratios

17

