(CS-449 Project Milestone 1: Personalized
Recommender with k-NN

Motivation and Outline: Anne-Marie Kermarrec
Detailed Design, Writing, Tests: Erick Lavoie
Teaching Assistant: Mu Zhou
Last Updated: 2022/03/16 16:04:25 +01’00’

Due Date: 25-03-2022 23:59 CET
Submission URL: https://cs449-submissions.epfl.ch:8083/m1
General Questions on Moodle
Personal Questions: mu.zhouQepfl.ch

Abstract
In this project, you will progressively build a recommender system
for Movies. In this Milestone, you will start by implementing a simple
baseline prediction for recommendation then distribute it with Spark. You
will then compare the quality of its predictions to a second personalized
approach based on similarities and k-NN. You will measure the CPU time
to develop insights in the system costs of the prediction methods.

1 Motivation: Movie Recommender

You maintain a movie recommendation platform: your goal is to automatically
recommend new movies for your users that they are most likely to appreciate.
While there is a range of increasingly sophisticated and accurate techniques to
build recommender systems, you will first start by building a simple system
based on global averages, that still take into account some personal bias in how
users rate movies. This is fast and inexpensive and will therefore serve as a
good baseline to compare with the more sophisticated techniques of the next
milestones.

Prediction methods based on global averages are straight-forward to im-
plement with the Resilient Distributed Dataset (RDD)E] in combination with
broadcast variableaﬂ so this Milestone will be a great way to assess the skills
you have developed in the exercise sessions.

Thttps://spark.apache.org/docs/latest/rdd-programming-guide.html#
resilient-distributed-datasets-rdds

“https://spark.apache.org/docs/latest/rdd-programming-guide.html#
broadcast-variables

https://cs449-submissions.epfl.ch:8083/m1
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/rdd-programming-guide.html#resilient-distributed-datasets-rdds
https://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables
https://spark.apache.org/docs/latest/rdd-programming-guide.html#broadcast-variables

1.1 Dataset: MovieLens 100K

For this milestone, you will use the MovieLens 100K dataset [I], as a represen-
tative example of what you might collect on your recommender platform. You
can download the dataset from this url: https://grouplens.org/datasets/
movielens/100k/.

The 100K MovieLens dataset comprises 100,000 ratings from 943 users on
1,682 movies. Each user has rated at least 20 different movies, and each movie
has been rated by at least one user.This dataset is small compared to the amount
of RAM available in common laptops and desktops, or the IC Cluster (as of
January 2021): all the exercises for this milestone should complete in a few
seconds or minutes at most.

The ratings are tuples (u,4,7,t) of an (anonymized) user id v € IN (positive
integers, starting at 1), a movie id ¢ € IN (also a positive integer starting at
l)ﬂ arating r € {1,2,3,4,5}, and timestamp ¢ (which we won’t use). They are
saved on the file system as tab-separated values, one line per tuple, in the file
’m1-100k/u.data’. For example, the first line of the file records that user 196
has rated movie 242 with a rating of & at timestamp 881250949:

196 242 3 881250949

All numbers are represented with ASCII characters, therefore user id 196
really represents that number (it is not a binary representation of the number).
All users have made at least 20 ratings, but some movies may be rated by only
one user. The dataset in that sense is ”compact”: all user ids and movie ids are
used in at least one ratingﬂ

For convenience and replicability in testing different solutions, the same rat-
ings are split randomly 80% training and 20% testing in five different folds
for cross-validatior’| such that the test sets are mutually exclusives. The train
and test sets are numbered according to their fold, respectively in the files
’m1-100k/uX.base’ and *m1-100k/uX.test’ where X is 1 to 5. It may happen
that some movies are not rated in one of the the training or test sets, because
they only had one rating. You therefore need to be careful with any opera-
tion involving division by item-based sums or averages, as they may introduce
divisions by zero.

If you were developing new algorithms, you should ensure your results are
not specific to the particular test set you have chosen by doing cross-validation
on all folds. However, for the sake of simplicity, you will only test on the
ml-100k/u2.test dataset (with the corresponding m1-100k/u2.base).

3We will use the more generic item rather than mowie through the rest of the document
to follow the literature conventions on collaborative filtering.

4This won’t necessarily be the case in the next milestones.

Shttps://en.wikipedia.org/wiki/Cross-validation_(statistics)

https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/100k/
https://en.wikipedia.org/wiki/Cross-validation_(statistics)

2 Proxy Problem: Predicting Ratings

Recommendations presented to a given user will be the top n predictions of
ratings of unseen items, with typically 3 < n < 20. For movie recommendations,
it is not so important that the actual three best ratings are suggested but more
that those actually recommended are at least above average and as good as
possible. The closer the predictions are to the actual ratings on the test set, the
more likely the top n predictions will be for highly rated items.

You will therefore evaluate the quality of different solutions according to
their predictive capabilities on test sets. To ensure the solutions generalize to
unseen items, the predictions will be made only using ratings from the train set
(u2.base). The ratings of the test set (u2.test) will only be used the measure
the quality of the predictions.

Multiple metrics are possible to measure the accuracy of predictions [3]. You
will use the simple Mean Absolute Error (MAE), i.e. average of the absolute
error between the actual rating for user u of item i (r, ;) and the predicted
rating for the same user-item pair (p, ;) for all ratings of the Test setﬂ

1
Mean-Absolute-Error (MAE) = m Z |Dusi — Tuil (1)
Tu,; € Test

3 Baseline: Prediction based on Global Average
Deviation

The following baseline incorporates some user bias, in the form of a user average
rating, in predictions, and then averages normalized deviations from each user’s
average. To understand why, observe the following two things.

First, some users tend to rate more positively than others and therefore have
different average ratings over all items, which we note 7, .. You will therefore
pre-process ratings to instead express how much they deviate from a user’s
average rating (ry; — Ty.e)-

Second, the average rating for a user does not necessarily sit in the mid-
dle of the rating scale {1,2,3,4,5} and therefore maximum deviations may be
asymmetric in the positive and negative directions. Moreover, the range of de-
viations, in the positive and negative directions, may differ for different users.
The average of many deviations from different users may therefore result in a
larger deviation than the range of some users, leading to an incorrect range, i.e.
< 1 or > 5, when making predictions. We therefore normalize the deviations
such that for all users, their deviations will be in the range [—1,1] with -1 cor-
responding to a rating of 1 (maximum negative deviation), 1 corresponding to
a rating of 5 (maximum positive deviation), and 0 corresponding to the average
rating for any user.

6The notation conventions used throughout the document are summarized in Appendix

The normalized deviation (7, ;) is therefore the following:

Tu,i =

" Tui — Tu,e
_ twi T Tue 2
scale(ry,i, Tue) (2)

with a scale specific to a user’s average rating:

5 — 'Fu7. lf €T > fuﬁ
scale(r,Tye) = Tue — 1 T < Tye (3)

1 ife="7y.

The global average deviation for an item 4 (F.,i) is the average of the devia-
tions for all users on this item (where U (i) is the set of users with a rating for
item 1):

A= ZuEU(i) Tu,i (4)
! U ()]

The prediction of rating for a user v on item ¢, which converts back the

global average deviation to a numerical rating in the range [1, 5], is then:

Pui = Tu,e + Toi * scale((Fu,e + Toi); Tue) (5)

Note that if 75.’1- = 0, or there is no rating for ¢ in the training set, then
Du,i = Ty,e. If u has no rating in the training set, simply use the global average,
i.e. Py = Tee-

In the following questions, you will compare the prediction accuracy of this
baseline with simpler methods based on averaging (7e.e, 7ue, Te:). This will
give you some intuitions about their relative efﬁcacyﬂ You will also measure the
computation time all four require. This will provide you with some intuitions
about the computing cost increase that comes with better accuracy, between
the four prediction methods of this section as well as those you will implement
later.

3.1 Questions

Implement the previous prediction methods using Scala’s standard library, with-
out using Spark.

B.1 Compute and output the global average rating (Te.), the average rating for
user 1 (1,4), the average rating for item 1 (Te 1), the average deviation for
item 1 (F.1), and the predicted rating of user 1 for item 1 (py 1, Eq@ using
data/ml-100k/u2.base for training. When computing the item average
for items that do not have ratings in the training set, use the global average
(Te,e). When making predictions for items that are not in the training set,
use the user average if defined, otherwise the global average.

"In real-life you should always ensure that simpler methods are not sufficient for the prob-
lem at hand before trying more complex methods, as they are generally much less expensive
and simpler to configure.

B.2 Compute the prediction accuracy (average MAE on ml-100k/u2. test) of
the previous methods (Te.e, Tue, Tei) and that of the proposed baseline

(Puis Eq.[3]-

B.3 Measure the time required for computing the MAE for all ratings in the
test set (ml-100k/u2. test) with all four methods by recording the current
time before and after (ex: with System.nanoTime () in Scala, the template
provides timingInMs for convenience). The duration is the difference be-
tween the two.

Include the time for computing all values required to obtain the answer
from the input dataset provided in the template: recompute from scratch
all necessary values even if they are available after computing previous re-
sults (ex: global average Te o). Also ensure you store the results in some
auzxiliary data structure (ex: Seq[(mae, timing)]) as you are performing
measurements to ensure the compiler won’t optimize away the computa-
tions that would otherwise be unnecessary.

For all four methods, perform three measurements and compute the aver-
age and standard-deviation.

In your report, show in a figure the relationship between prediction preci-
sion (MAE) on the x axis, and the computation time on the y azis includ-
ing the standard-deviation. Report also the technical specifications (model,
CPU speed, RAM, OS, Scala language version, and JVM wversion) of the
machine on which you ran the tests. Which of the four prediction meth-
ods is the most expensive to compute? Is the relationship between MAE
and computation linear? What do you conclude on the computing needs
of more accurate prediction methods?

¢+ baseline

item-avg
- user-avg
- global-avg

0.014

- -

0.012

0.010

Time (s)

0.008

0.006

0.720 0.725 0.730 0.735 0.740 0.745 0.750
MAE

Figure 1: Example of Time vs MAE for different prediction methods. Actual
position and standard deviation in final figure should be different.

3.2 Tips

Debugging numerical programs, such as those of this milestone, can be tricky
because a program will not fail but will instead simply provide incorrect output.
To ensure you have not made mistakes in some steps, try the followings:

e Print a few values, as well as statistics (min, max, standard-deviation,
average, distribution of values in a certain range) of results and interme-
diary computations. Especially make sure you do not obtain not-a-number
(nan) values.

e Check that the predictions are in the range [1,5]. If not there is a problem
in your code.

e The MAE for Eq. [f] should be below 0.80.
Also:

e Scala’s standard library API is not backward compatible between minor
versions (ex: 2.11 may not be compatible with 2.12). Make sure to use
the documentation for the version of the project, as listed in build.sbt.

4 Spark Distribution Overhead

Spark’s Resilient Distributed Datasets (RDDs) offer an API similar to Scala’s
standard collections but enable distributed operations on multiple worker nodes
in parallel with minimal code changes.

However, the distributed operations are subject to a base overhead that is
higher than using Scala’s standard library. Without proper care in first ensuring
the performance benefits of distributed operations compensate for the overhead
of the library, you may slow down your application by using Spark.

4.1 Questions

Implement p, ; using Spark RDDs. Your distributed implementation should
give the same results as your previous implementation using Scala’s standard
library. Once your implementation works well with data/m1-100k/u2.base and
data/ml1-100k/u2.test, stress test its performance with the bigger
data/ml-25m/r2.train and data/ml-25m/r2.test.

D.1 Ensure the results of your distributed implementation are consistent with
B.1 and B.2 on data/ml-100k/u2.base and data/ml-100k/u2.test.
Compute and output the global average rating (Ve o), the average rating for
user 1 (71.e), the average rating for item 1 (7e1), the average deviation
for item 1 (Fe.1), and the predicted rating of user 1 for item 1 (p11, Eq @
Compute the prediction accuracy (average MAE on ml-100k/u2. test) of
the proposed baseline (p.;, Eq. @

D.2 Measure the combined time to (1) pre-compute the required baseline values
for predictions and (2) to predict all values of the test set on the 25M
dataset, data/ml-25m/r2.train and data/ml-25m/r2.test, and com-
pute the MAE. Compare the time required by your implementation using
Scala’s standard library (B.1 and B.2) on your machine, and your new
distributed implementation using Spark on iccluster028. Use 1 and J
executors for Spark and repeat all three experiments (predict. Baseline, dis-
tributed. Baseline 1 worker, distributed. Baseline 4 workers) 3 times. Write
in your report the average and standard deviation for all three experiments,
as well as the specification of the machine on which you ran the tests (sim-
ilar to B.3).

As a comparison, our reference implementation runs in 44s on the clus-
ter with 4 workers. Try obtaining results roughly in the same ballpark
or faster, teams with the fastest implementations will obtain more points.
Don’t worry if your code is slower during some executions because the
cluster is busy, we will re-run your code for grading in a less busy envi-
ronment.

Try optimizing your local baseline Scala implementation by avoiding tem-
porary objects, instead preferring the use of mutable collections and data
structures. Can you make it faster, running locally on your machine with-
out Spark, than on the cluster with 4 workers? Explain the changes you
have made to make your code faster in your report.

4.2 Tips

e Sometimes the Java Garbage Collector, gets overwhelmed after multiple
runs within the same sbt session. You may notice warnings such as:

[warn] In the last 10 seconds, 5.55 (57.4\),) were spent in GC.
[Heap: 3.19GB free of 4.92GB, max 7.11GB] Consider increasing
the JVM heap using ‘-Xmx‘ or try a different collector,

e.g. ‘-XX:+UseG1GC‘, for better performance.

If this happens, try increasing memory by invoking sbt with 8GB of Mem-
ory, prior to running the experiments:

export JAVA_OPTS="-Xmx8G"; sbt
You may also need to stop and restart sbt from time to time to force the

memory to be cleaned up. If that still does not help, try optimizing your
code to use less memory.

5 Personalized Predictions

While some movies are highly rated by most users, most movies might appeal
only to subsets of users EL In effect, to best answer the tastes of a maximum of
users, you would like to provide personalized recommendations beyond the usual
blockbusters. The following approach is based on collaborative filtering [3], i.e.
automatically identifying similarities in ratings between users to recommend
highly rated movies from those users that are most similar. When tuned cor-
rectly, similarity approaches give higher prediction accuracy at the cost of higher
computational complexity.

5.1 Similarity-based Predictions

The global average deviation (Eq. M) gives an equal weight of %L to all n users that
provided ratings for item i. The core insight behind similarity-based techniques
is that not all users are equally useful for predictions. Giving a different weight
to different users, with higher weights to similar users, can therefore improve
prediction accuracy.

There are many similarity metrics to choose from [2 3] to determine how
similar two users are. The adjusted cosine similarity [4] works relatively well
and is simple, you will therefore use it for the rest of the project (in which I(u)
are the items rated by user u):

> “ o)) Pu,i* P i R R
_) on f({,fui”)iiyzm NTY (I(u) UI(v)) # 05 Ficrw)Tui # 05 Jicrw)foi # 0

Su, v =
0 otherwise
(6)
The set intersection on the numerator selects only items that are in common.
The summation in each term on the denominator normalizes the sum on the
numerator. The root of a squared sum gives a higher weight to large deviations
than a regular average. This similarity function ranges between [—1,1], with
—1 if two users rate at the maximum of the rating scale in opposite ways on
all the same items, and 1 if two users rate in exactly the same direction at the
maximum of the rating scale on the same items (e.g. if the two users are actually
the same). Most of the similarity values will be between those two extremes.
You can now compute the user-specific weighted-sum deviation for an item 4
(Fe.i(1)), which is similar to Eq. 4 from Milestone 1 but gives a different weight
to ratings of other users based on their similarity:

2veu iy [5u,vl

(7)

_ Zveu(Suwthoi et (i) Suw # 0
To,i(u) = .
0 otherwise

8This is an instance of the Long Tail distribution https://en.wikipedia.org/wiki/Long_
tail

https://en.wikipedia.org/wiki/Long_tail
https://en.wikipedia.org/wiki/Long_tail

~ The prediction equation is similar to Eq. [5|but incorporates the user-specific
Te,; (1) of Eq. [7|instead of 7, ; of Eq.

Duyi = Tuye + ;.Z(u) scale((Tuy,e + F.,i(u)), Tue) (8)

Note that if 74 ;(u) = 0, or there is no rating for 4 in the training set, then
Du,i = Ty,e. If uhas no rating in the training set, and therefore 7, o is undefined,
simply use the global average, i.e. py ; = Te.e-

)

5.2 Preprocessing Ratings

Notice that each term of the denominator of Eq. |E|, ie. ’/Zjel(u) (fuﬂ,)Q’ is

independent of the deviation 7, ; for all j € I(u), the items rated by user u. By
virtue of the law of multiplication for fractions ({25 = ¢ * §), each term of the
denominator can be applied independently, before the multiplication, to each
’Iﬁuﬂ'l

+ if i € I(u) and Jjer(y)Fu,j 70
Fuyi = Xiercu (Fus)? GEI(u) u,j o)

Tu,i =
0 otherwise

You can use that property to preprocess ratings such that only the numerator
multiplication of Eq. [6] remains to be computed:

Su,v = Z Tuu,i * %‘J’U,i (10)
1€(I(u)NI(v))

This should make your implementation faster.

5.3 Questions

P.1 Using uniform similarities of 1 between all users, compute the predicted
rating of user 1 for item 1 (p11) and the prediction accuracy (MAE on
ml-100k/u2. test) of the personalized baseline predictor.

P.2 Using the adjusted cosine similarity (Eq. @, compute the similarity be-
tween user 1 and user 2 (s12), the predicted rating of user 1 for item 1
(p11 Eq. @) and the prediction accuracy (MAE on ml-100k/u2. test) of
the personalized baseline predictor.

P.3 Implement the Jaccard Coeﬁﬁcz’enﬂ Provide the mathematical formula-
tion of your similarity metric in your report. Using the jaccard similarity,
compute the similarity between user 1 and user 2 (s1,2), the predicted rat-
ing of user 1 for item 1 (p1,1 Eq. @) and the prediction accuracy (MAE on
ml-100k/u2. test) of the personalized baseline predictor. Is the Jaccard
Coefficient better or worst than Adjusted Cosine similarity?

9nttps://en.wikipedia.org/wiki/Jaccard_index

https://en.wikipedia.org/wiki/Jaccard_index

5.4 Tips

e The denominator of Eq.[6]and Eq.[9]should really be a sum over items, and
not users. It can be easy to confuse the two with some data structures.

e The user-specific weighted-sum deviation (Eq.|7) should be computed for
all users u and all items 7 (for all ratings to be predicted). Moreover, v is
independent from u but u may also be included in U(%) in some cases.

6 Neighbourhood-Based Predictions

The similarity method of the previous section lowers the weight of some ratings
such that they become much less significant for the final prediction. The insight
of neighbourhood method is that the least significants can actually be ignored,
with limited negative, and sometimes positive, impact on predictions. Formally,
that means we nullify the similarity values for a majority of pairs of users (s, , =
0) and therefore the deviations (ratings) multiplied by a null similarity (in Eq.
are not considered.

Keeping only the k nearest neighbours (excluding self-similarity of a user
with themselves), according to a similarity metric (ex: Eq. @, gives us the
k-NN algorithm which has the added benefit of lowering memory usage, data
transfers, and prediction time. The actual impact of the neighbourhood size k
on the prediction accuracy is dependent on the dataset, similarity metric, and
prediction methods. This needs to be investigated empirically for every specific
problem, which you will do in the following questions.

6.1 Questions

N.1 Implement the k-NN predictor using the adjusted cosine similarity. Do
not include self-similarity in the k-nearest neighbours. Using k = 10
and data/ml-100k/u2.base for training, output the similarities between:
(1) user 1 and itself; (2) user 1 and user 864; (3) user 1 and user
886. Still using k = 10, output the prediction for user 1 and item 1
(p1.1), and make sure that you obtain an MAE of 0.8287 + 0.0001 on
data/ml-100k/u2. test.

N.2 Report the MAE on data/ml-100k/u2. test for k = 10, 30, 50, 100, 200, 300, 400, 800, 943.
What is the lowest k such that the MAFE is lower than for the baseline
(non-personalized) method?

N.3 Measure the time required for computing predictions (without using Spark)
and the MAE on data/ml-100k/u2.test. Include the time to train the
predictor on data/ml-100k/u2.base including computing the similarities
Su,v and using k = 300. Try reducing the computation time with alterna-
tive implementation techniques (making sure you keep obtaining the same
results). Mention in your report which alternatives you tried, which ones

10

were fastest, and by how much. The teams with the correct answer and
shortest times on a secret test set will obtain more points on this question.

7 Recommendation

To provide recommendations of new movies to user u, you can now simply
compute predictions for which there are no ratings in the dataseﬂ and keep
the n best:

R(u,n) = top(n, [pu,i|ru,; ¢ Ratings]) (11)

To recommend movies for a new user, use id 944 for that user (the highest
user id in the dataset is 943, so that is one higher than that), and add at least
20 ratings to the dataset. As the baseline predictions are based on ratings that
deviate from the rating average, make sure there are a good number of ratings
across the entire range [1, 5].

For convenience and grading, the template already provides ratings in
data/personal.csv but you can still change them for your own preferences to
see what recommendations you would personally get!

7.1 Questions

R.1 Train a k-NN predictor with training data from data/ml-100k/u.data,
augmented with additional ratings from user 944" provided in personal. csv,
using adjusted cosine similarity and k = 300. Report the prediction for
user 1 item 1 (p1,1).

R.2 Report the top 3 recommendations for user “944” using the same k-NN
predictor as for R.1. Include the movie identifier, the movie title, and
the prediction score in the output. If additional recommendations have the
same predicted value as the top 8 recommendations, prioritize the movies
with the smallest identifiers in your top 3 (ex: if the top 8 recommenda-
tions all have predicted scores of 5.0, choose the top 3 with the smallest
ids.) so your results do not depend on the initial permutation of the rec-
ommendations.

7.2 Tips

e Check that the prediction scores for the recommended items are indeed
close to 5.

10We are assessing the quality of recommendations subjectively rather than objectively
(?ground truth” is our personal judgement), therefore we are using the entire dataset for
predictions. If we were assessing the quality of recommendations using an objective metric,
we would again use disjoint train and test sets.

11

8 Deliverables

You can start from the latest version of the template:

e Zip Archive: https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/
cs449-Template-M1/-/archive/master/cs449-Template-Ml-master.zip

e Git Repository:
git clone

https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1.
git

We may update the template to clarify or simplify some aspects based on student
feedback during the semester, so please refer back to https://gitlab.epfl.
ch/sacs/cs-449-sds-public/project/cs449-Template-M1 to see the latest
changes.

Provide answers to the previous questions in a pdf report (if your document
saves in any other format, export/print to a pdf for the submission). Also,
provide your source code (in Scala) in a single archive:

report.pdf
src/*

Your archive should be around or less than 1MB. Submit to the TA using
the submission URL of the first page of this Milestone.

9 Grading

You will be graded both on the question answers, and source code quality as well
as organization. Points for source code will reflect how easy it was for the TA
to run your code and check your answers. Grading for answers to the questions
without accompanying executable code will be 0.

9.1 Collaboration vs Plagiarism

You are encouraged to help each other better understand the material of the
course and the project by asking questions and sharing answers. You are also
very much encouraged to help each other learn the Scala syntax, semantics,
standard library, and idioms and Spark’s Resilient Distributed Data types and
APIs. It is also fine if you compare numerical answers to the questions before
submitting your report and code for grading. The dynamics of peer learning
can enable the entire class to go much further than each person could have gone
individually, so it is very welcome.

However, each team should write their own original report and code. We
will give 0 to all submissions that are copies of one another from this year, and

12

https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1/-/archive/master/cs449-Template-M1-master.zip
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1/-/archive/master/cs449-Template-M1-master.zip
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1.git
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1.git
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1
https://gitlab.epfl.ch/sacs/cs-449-sds-public/project/cs449-Template-M1

also 0 to copies of previous years’ submissions. You are also incentivized to
keep the fastest implementation techniques private to your team, as the fastest
implementations will receive higher grades. This is done to reward the teams
that will spend more time exploring different implementation techniques.

10 Updates

Since the original release of the Milestone description on February 25th, we have
made the following changes:

e Fixed inconsistency between N.2 and template repo so both use 943 as
the last k value to test.

References

[1] HARPER, F. M., AND KONSTAN, J. A. The MovieLens datasets: History

and context. ACM Transactions on Interactive Intelligent Systems 5, 4 (Dec.
2015), 19:1-19:19.

[2] HERLOCKER, J., KONSTAN, J. A., AND RIEDL, J. An empirical analysis
of design choices in neighborhood-based collaborative filtering algorithms.
Information retrieval 5, 4 (2002), 287-310.

[3] KARYDI, E., AND MARGARITIS, K. Parallel and distributed collaborative
filtering: A survey. ACM Comput. Surv. 49, 2 (Aug. 2016).

[4] SARWAR, B., KARyP1s, G., KONSTAN, J., AND RIEDL, J. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web (2001), pp. 285-295.

A Notation
e u and v: users identifiers
e i and j: items identifiers
o 7, o: global average (over all users and items) (mTlings\ > ;€Ratings i)
® 7,4 average rating for user u, over all items (m D ier(u) Tusi)
e 7, ;: average rating for item ¢, over all users (W ZueU(i) Tu,i)
e 7, ;: deviation from the average 7, o
e 7, rating of user u on item ¢, (u is always written before 7)

e p,: predicted rating of user w on item ¢

13

|X|: number of items in set X
x: scalar multiplication

Tu,isTv,i € Train: both r, ; and 7, ; are elements of Train for the same ¢

1 if x is true

1,: indicator function, { }
0 otherwise

u,v € U: shorthand for Yu € U,Vv € U

R(u,n): top n recommendations for user u as a list

sorted, (x): sort the list in decreasing order

[z]y]: create a list with elements 2 such that y is true for each of them

top(n,1): return the highest n elements of list

U: set of users

I: set of items

U(i): is the set of users with a rating for item i ({u|r, ; € Train})

I(u): is the set of items for which user u has a rating ({i|r,,; € Train})

14

B

Pedagogical Notes

In this appendix, we explain why we structured the Milestones as they are. This
is not necessary to complete the Milestone successfully but might be of interest
for future revisions and curious students. Among other goals, the entire project
aims to:

Develop the skills required to implement and optimize variations of a data
science algorithms locally and in a distributed manner;

Understand how k-NN fits in a recommender application, and how it re-
lates in performance and accuracy to other similar methods;

Understand the methodology to build reliable distributed applications in
a step-wise fashion;

Compare the benefits and costs of distributed and non-distributed ap-
proaches to find where each is most applicable;

Develop the skills to choose the most affordable infrastructure for different
operation contexts.

Moreover, for the previous sections, here are specific goals:

B.1

Progression :
Skills :

Methodology :

Knowledge

Evaluate

B.2

Progression

Skills

Methodology :

Knowledge

Evaluate

Baseline
Stepping stone towards personalized methods
Get familiar with Scala and Movielens using simple algorithms

Establish a baseline that more complex algorithms should improve upon
in accuracy

: Relationship between accuracy and computing cost

: Scala programming skills

Spark Distribution Overhead
: Get familiar with Spark with simple algorithms
: Use simpler (non-distributed) implementations to verify correctness

Compare the performance gains of distribution against an optimized
non-distributed version

: When to distribute implementations, when to optimize

: Spark programming abilities

15

B.3

Progression

Evaluate :

B.4

Progression :

Skills

Knowledge

Evaluate :

B.5

Progression :

Personalized Predictions

: Intermediate stage between non-personalized and k-NN

Translation of similarity metric from mathematical definition to code,
and comparison against baseline

Neighbourhood-based Predictions
Stepping stone towards distributed k-NN implementations

: Implement k-NN on a single machine
: Impact of the choice of k on accuracy

Programming skills for fast code

Recommender

Understand how k-NN can be used in an actual application, ties all
previous skills in the concrete use case of the project

16

	Motivation: Movie Recommender
	Dataset: MovieLens 100K

	Proxy Problem: Predicting Ratings
	Baseline: Prediction based on Global Average Deviation
	Questions
	Tips

	Spark Distribution Overhead
	Questions
	Tips

	Personalized Predictions
	Similarity-based Predictions
	Preprocessing Ratings
	Questions
	Tips

	Neighbourhood-Based Predictions
	Questions

	Recommendation
	Questions
	Tips

	Deliverables
	Grading
	Collaboration vs Plagiarism

	Updates
	Notation
	Pedagogical Notes
	Baseline
	Spark Distribution Overhead
	Personalized Predictions
	Neighbourhood-based Predictions
	Recommender

