CPSOptimizer.scala 20.3 KB
Newer Older
Sapphie's avatar
Sapphie committed
1
2
3
4
5
6
7
8
9
10
11
package l3

import scala.collection.mutable.{ Map => MutableMap }

abstract class CPSOptimizer[T <: CPSTreeModule { type Name = Symbol }]
  (val treeModule: T) {
  import treeModule._

  protected def rewrite(tree: Tree): Tree = {
    val simplifiedTree = fixedPoint(tree)(shrink)
    val maxSize = size(simplifiedTree) * 3 / 2
12
    fixedPoint(simplifiedTree, 8) { t => inline(t, maxSize) }
Sapphie's avatar
Sapphie committed
13
14
15
16
17
18
19
20
21
22
23
24
  }

  private case class Count(applied: Int = 0, asValue: Int = 0)

  private case class State(
    census: Map[Name, Count],
    aSubst: Subst[Atom] = emptySubst,
    cSubst: Subst[Name] = emptySubst,
    eInvEnv: Map[(ValuePrimitive, Seq[Atom]), Atom] = Map.empty,
    cEnv: Map[Name, Cnt] = Map.empty,
    fEnv: Map[Name, Fun] = Map.empty) {

Sapphie's avatar
Sapphie committed
25
26
    def eEnv: Map[Atom, (ValuePrimitive, Seq[Atom])] =
      eInvEnv.map(_.swap)
Sapphie's avatar
Sapphie committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    def dead(s: Name): Boolean =
      ! census.contains(s)
    def appliedOnce(s: Name): Boolean =
      census.get(s).contains(Count(applied = 1, asValue = 0))

    def withASubst(from: Atom, to: Atom): State =
      copy(aSubst = aSubst + (from -> aSubst(to)))
    def withASubst(from: Name, to: Atom): State =
      withASubst(AtomN(from), to)
    def withASubst(from: Name, to: Literal): State =
      withASubst(from, AtomL(to))
    def withASubst(from: Seq[Name], to: Seq[Atom]): State =
      copy(aSubst = aSubst ++ (from.map(AtomN) zip to.map(aSubst)))

    def withCSubst(from: Name, to: Name): State =
      copy(cSubst = cSubst + (from -> cSubst(to)))

    def withExp(atom: Atom, prim: ValuePrimitive, args: Seq[Atom]): State =
      copy(eInvEnv = eInvEnv + ((prim, args) -> atom))
    def withExp(name: Name, prim: ValuePrimitive, args: Seq[Atom]): State =
      withExp(AtomN(name), prim, args)

    def withCnts(cnts: Seq[Cnt]): State =
      copy(cEnv = cEnv ++ (cnts.map(_.name) zip cnts))
    def withFuns(funs: Seq[Fun]): State =
      copy(fEnv = fEnv ++ (funs.map(_.name) zip funs))
  }

  // Shrinking optimizations

  private def shrink(tree: Tree): Tree =
    shrink(tree, State(census(tree)))

60
61
  private def replaceArgs(args: Seq[Atom], s: State): Seq[Atom] = 
    args map { a => s.aSubst.getOrElse(a, a) }
62
63
64

  private def replaceCnt(cnt: Symbol, s: State): Symbol = 
    s.cSubst.getOrElse(cnt, cnt)
65
  
66
  private def shrink(tree: Tree, s: State): Tree = tree match {
Sapphie's avatar
Sapphie committed
67
    
68
    case AppC(oldCntName, args) => {
Sapphie's avatar
Sapphie committed
69
      val replacedArgs = replaceArgs(args, s)
70
      val cntName = replaceCnt(oldCntName, s)
71
72

      if (s.appliedOnce(cntName) && s.cEnv.contains(cntName)) {
Sapphie's avatar
Sapphie committed
73
74
75
76
77
78
        val cnt = s.cEnv(cntName)
        val newState = s.withASubst(cnt.args, replacedArgs)
        shrink(cnt.body, newState)
      } else {
        AppC(cntName, replacedArgs)
      }
79
80
81
82
    }
      
    case AppF(oldFunAtom, oldRetC, args) => {
      val funAtom = s.aSubst.getOrElse(oldFunAtom, oldFunAtom)
Sapphie's avatar
Sapphie committed
83
      val replacedArgs = replaceArgs(args, s)
84
      val retC = replaceCnt(oldRetC, s)
85

Sapphie's avatar
Sapphie committed
86
      funAtom match {
87
        case AtomN(n) if s.fEnv.contains(n) && s.appliedOnce(n) => 
Sapphie's avatar
Sapphie committed
88
          val fun = s.fEnv(n)
89
90
          val newState = s.withASubst(fun.args, replacedArgs).withCSubst(fun.retC, retC)
          shrink(fun.body, newState)
Sapphie's avatar
Sapphie committed
91
        case _ => AppF(funAtom, retC, replacedArgs)
Sapphie's avatar
Sapphie committed
92
      }
93
    }
Sapphie's avatar
Sapphie committed
94

95
96
97
98
    case LetF(funs, body) =>  {
      val undeadFuns = funs.filterNot(f => s.dead(f.name))
      val nonInlined = undeadFuns.filter(fun => !s.appliedOnce(fun.name))
      val newState = s.withFuns(undeadFuns)
99

100
101
102
103
104
105
      val shrunkFuns = nonInlined.map(f => Fun(f.name, f.retC, f.args, shrink(f.body, newState)))
      val shrunkBody = shrink(body, newState)

      if (shrunkFuns.isEmpty) shrunkBody 
      else LetF(shrunkFuns, shrunkBody)
    }
106
    
107
108
    case LetP(name, prim, args, body) => {
      val replacedArgs = replaceArgs(args, s)
Sapphie's avatar
Sapphie committed
109
      lazy val newState = s.withExp(name, prim, replacedArgs)
110
      lazy val shrunkBody = shrink(body, newState)
Sapphie's avatar
Sapphie committed
111
      lazy val noOp = LetP(name, prim, replacedArgs, shrunkBody)
112

113
      // Dead code elim
Sapphie's avatar
Sapphie committed
114
      if (s.dead(name) && !impure(prim)) {
115
        shrunkBody
Sapphie's avatar
Sapphie committed
116
      } else {
117
118
        val allLitOpt = replacedArgs.map(_.asLiteral)
        lazy val asLit = allLitOpt.map(_.get)
119
120

        if (!unstable(prim) && !impure(prim) && s.eInvEnv.contains((prim, replacedArgs))) {
121
122
          val preComputedAtom = s.eInvEnv((prim, replacedArgs))
          shrink(body, newState.withASubst(name, preComputedAtom))
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        } else if (prim == identity) { 
          shrink(body, s.withASubst(name, replacedArgs(0)))
        } else replacedArgs match {
          // Constant folding
          case Seq(AtomL(l1), AtomL(l2)) if vEvaluator.isDefinedAt((prim, asLit)) => 
            shrink(body, s.withASubst(name, vEvaluator((prim, asLit))))
          // Same argument reduction
          case Seq(a1, a2) if a1 == a2 && sameArgReduce.isDefinedAt(prim, a1) =>
            val reduced = sameArgReduce((prim, a1))
            shrink(body, s.withASubst(name, sameArgReduce((prim, reduced))))
          // Left Neutral
          case Seq(AtomL(l1), a2) if leftNeutral((l1, prim)) =>
            shrink(body, s.withASubst(name, a2))
          // Left Absorbing
          case Seq(AtomL(l1), a2) if leftAbsorbing((l1, prim)) =>
            shrink(body, s.withASubst(name, l1))
          // Right Neutral
          case Seq(a1, AtomL(l2)) if rightNeutral((prim, l2)) =>
            shrink(body, s.withASubst(name, a1))
          // Right Absorbing
          case Seq(a1, AtomL(l2)) if rightAbsorbing((prim, l2)) =>
            shrink(body, s.withASubst(name, l2))
Sapphie's avatar
Sapphie committed
145
146
          case Seq(a1) if s.eEnv.isDefinedAt(a1) =>
            val (maybeBlockAlloc, maybeLengthAtom) = s.eEnv(a1)
Sapphie's avatar
Sapphie committed
147
148
            blockAllocTag.lift(maybeBlockAlloc) match {
              case Some(tag) =>
Sapphie's avatar
Sapphie committed
149
150
151
152
153
154
155
                if (prim == blockTag) {
                  shrink(body, s.withASubst(name, AtomL(tag)))
                } else if (prim == blockLength) {
                  shrink(body, s.withASubst(name, maybeLengthAtom(0)))
                } else {
                  noOp
                }
Sapphie's avatar
Sapphie committed
156
157
158
              case None =>
                noOp
            }
Sapphie's avatar
Sapphie committed
159

160
          case _ => noOp
161
        }
Sapphie's avatar
Sapphie committed
162
      }
163
    }
164
  
165
166
    case LetC(cnts, body) => {
      val undeadConts = cnts.filterNot(cnt => s.dead(cnt.name))
Sapphie's avatar
Sapphie committed
167
168
169
170
171
      val undeadShrunkConts = undeadConts.map { cnt =>
        val newBody = shrink(cnt.body, s)
        Cnt(cnt.name, cnt.args, newBody)
      }

172
173
      val nonInlinedConts = undeadShrunkConts.filterNot { cnt =>
        s.appliedOnce(cnt.name)
Sapphie's avatar
Sapphie committed
174
175
176
      }

      val newBody = shrink(body, s.withCnts(undeadShrunkConts))
Sapphie's avatar
Sapphie committed
177
      if (nonInlinedConts.isEmpty) {
Sapphie's avatar
Sapphie committed
178
179
        newBody
      } else {
Sapphie's avatar
Sapphie committed
180
        LetC(nonInlinedConts, newBody)
181
      }
182
183
184
    }

    case If(cond, args, thenC, elseC) => 
Sapphie's avatar
Sapphie committed
185
186
187
      val newArgs = replaceArgs(args, s)
      def getApp(b: Boolean): AppC = {
        val contToUse = if (b) thenC else elseC
188
        AppC(contToUse, Seq())
Sapphie's avatar
Sapphie committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
      }
      val allLitOpt = newArgs.map(_.asLiteral)
      val isAllLit = allLitOpt.forall(_.isDefined)
      lazy val asLit = allLitOpt.map(_.get)
      // Constant folding
      if (isAllLit && cEvaluator.isDefinedAt((cond, asLit))) {
        getApp(cEvaluator((cond, asLit)))
      } else {
        lazy val x = newArgs(0)
        lazy val y = newArgs(1)
        if (newArgs.length == 2 && x == y) {
          getApp(sameArgReduceC(cond))
        } else {
          If(cond, newArgs, replaceCnt(thenC, s), replaceCnt(elseC, s))
        }
      }
205

206
    case Halt(a) => 
Sapphie's avatar
Sapphie committed
207
208
      Halt(s.aSubst.getOrElse(a, a))

209
  }
Sapphie's avatar
Sapphie committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

  // (Non-shrinking) inlining

  private def inline(tree: Tree, maxSize: Int): Tree = {
    def copyT(tree: Tree, subV: Subst[Atom], subC: Subst[Name]): Tree = {
      (tree: @unchecked) match {
        case LetP(name, prim, args, body) =>
          val name1 = name.copy()
          LetP(name1, prim, args map subV,
               copyT(body, subV + (AtomN(name) -> AtomN(name1)), subC))
        case LetC(cnts, body) =>
          val names = cnts map (_.name)
          val names1 = names map (_.copy())
          val subC1 = subC ++ (names zip names1)
          LetC(cnts map (copyC(_, subV, subC1)), copyT(body, subV, subC1))
        case LetF(funs, body) =>
          val names = funs map (_.name)
          val names1 = names map (_.copy())
          val subV1 = subV ++ ((names map AtomN) zip (names1 map AtomN))
          LetF(funs map (copyF(_, subV1, subC)), copyT(body, subV1, subC))
        case AppC(cnt, args) =>
          AppC(subC(cnt), args map subV)
        case AppF(fun, retC, args) =>
          AppF(subV(fun), subC(retC), args map subV)
        case If(cond, args, thenC, elseC) =>
          If(cond, args map subV, subC(thenC), subC(elseC))
        case Halt(arg) =>
          Halt(subV(arg))
      }
    }

    def copyC(cnt: Cnt, subV: Subst[Atom], subC: Subst[Name]): Cnt = {
      val args1 = cnt.args map (_.copy())
      val subV1 = subV ++ ((cnt.args map AtomN) zip (args1 map AtomN))
      Cnt(subC(cnt.name), args1, copyT(cnt.body, subV1, subC))
    }

    def copyF(fun: Fun, subV: Subst[Atom], subC: Subst[Name]): Fun = {
      val retC1 = fun.retC.copy()
      val subC1 = subC + (fun.retC -> retC1)
      val args1 = fun.args map (_.copy())
      val subV1 = subV ++ ((fun.args map AtomN) zip (args1 map AtomN))
      val AtomN(funName1) = subV(AtomN(fun.name))
      Fun(funName1, retC1, args1, copyT(fun.body, subV1, subC1))
    }

    val fibonacci = Seq(1, 2, 3, 5, 8, 13)

    val trees = LazyList.iterate((0, tree), fibonacci.length){ case (i, tree) =>
      val funLimit = fibonacci(i)
      val cntLimit = i

      def sameLen[T,U](formalArgs: Seq[T], actualArgs: Seq[U]): Boolean =
        formalArgs.length == actualArgs.length

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
      def inlineT(tree: Tree)(implicit s: State): Tree = tree match {
        
        case AppC(oldCntName, oldArgs) => {
          val cntName = replaceCnt(oldCntName, s)
          val args = replaceArgs(oldArgs, s)
          
          if (s.cEnv.contains(cntName)) {
            val cnt = copyC(s.cEnv(cntName), s.aSubst, s.cSubst)
            val newState = s.withASubst(cnt.args, args)
            inlineT(cnt.body)(newState)
          } else {
            AppC(cntName, args)
          }
        }

        case AppF(oldFunName, oldRetC, oldArgs) => {
          val funName = s.aSubst.getOrElse(oldFunName, oldFunName)
          val retC = replaceCnt(oldRetC, s)
          val args = replaceArgs(oldArgs, s) 

          funName match {
            case AtomN(n) if s.fEnv.contains(n) => {
              val oldFun = s.fEnv(n)
288
289
290
291
              val notUsedAsValue = s.census.get(oldFun.name).fold(false)(count => count.asValue == 0)
              val nonRecursive = notUsedAsValue && !census(oldFun.body).contains(oldFun.name)

              if (nonRecursive && sameLen(oldFun.args, args)) {
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
                val fun = copyF(oldFun, s.aSubst, s.cSubst)
                val newState = s.withASubst(fun.args, args).withCSubst(fun.retC, retC) 
                inlineT(fun.body)(newState)
              } else {
                AppF(funName, retC, args)
              }
            }
            case _ => AppF(funName, retC, args)
          }
        }

        case Halt(arg) => Halt(s.aSubst.getOrElse(arg, arg))
        case If(cond, args, thenC, elseC) => If(cond, replaceArgs(args, s), replaceCnt(thenC, s), replaceCnt(elseC, s))
        case LetP(name, prim, args, body) => LetP(name, prim, replaceArgs(args, s), inlineT(body))
        
        case LetC(oldCnts, body) => {
          val cnts = oldCnts map (c => Cnt(c.name, c.args, inlineT(c.body)))
          val inlinedCnts = cnts.filter(c => size(c.body) <= cntLimit)
          val newState = s.withCnts(inlinedCnts)

          LetC(cnts, inlineT(body)(newState))
        }

        case LetF(oldFuns, body) => {
          val funs = oldFuns map (f => Fun(f.name, f.retC, f.args, inlineT(f.body)))
          val inlinedFuns = funs.filter(f => size(f.body) <= funLimit)          
          val newState = s.withFuns(inlinedFuns)

          LetF(funs, inlineT(body)(newState))
        }
      }
Sapphie's avatar
Sapphie committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

      (i + 1, fixedPoint(inlineT(tree)(State(census(tree))))(shrink))
    }

    trees.takeWhile{ case (_, tree) => size(tree) <= maxSize }.last._2
  }

  // Census computation
  private def census(tree: Tree): Map[Name, Count] = {
    val census = MutableMap[Name, Count]().withDefault(_ => Count())
    val rhs = MutableMap[Name, Tree]()

    def incAppUseN(name: Name): Unit = {
      val currCount = census(name)
      census(name) = currCount.copy(applied = currCount.applied + 1)
      rhs.remove(name).foreach(addToCensus)
    }

    def incAppUseA(atom: Atom): Unit =
      atom.asName.foreach(incAppUseN(_))

    def incValUseN(name: Name): Unit = {
      val currCount = census(name)
      census(name) = currCount.copy(asValue = currCount.asValue + 1)
      rhs.remove(name).foreach(addToCensus)
    }

    def incValUseA(atom: Atom): Unit =
      atom.asName.foreach(incValUseN(_))

    def addToCensus(tree: Tree): Unit = (tree: @unchecked) match {
      case LetP(_, _, args, body) =>
        args foreach incValUseA; addToCensus(body)
      case LetC(cnts, body) =>
        rhs ++= (cnts map { c => (c.name, c.body) }); addToCensus(body)
      case LetF(funs, body) =>
        rhs ++= (funs map { f => (f.name, f.body) }); addToCensus(body)
      case AppC(cnt, args) =>
        incAppUseN(cnt); args foreach incValUseA
      case AppF(fun, retC, args) =>
        incAppUseA(fun); incValUseN(retC); args foreach incValUseA
      case If(_, args, thenC, elseC) =>
        args foreach incValUseA; incValUseN(thenC); incValUseN(elseC)
      case Halt(arg) =>
        incValUseA(arg)
    }

    addToCensus(tree)
    census.toMap
  }

  private def size(tree: Tree): Int = (tree: @unchecked) match {
    case LetP(_, _, _, body) => size(body) + 1
    case LetC(cs, body) => (cs map { c => size(c.body) }).sum + size(body)
    case LetF(fs, body) => (fs map { f => size(f.body) }).sum + size(body)
    case AppC(_, _) | AppF(_, _, _) | If(_, _, _, _) | Halt(_) => 1
  }

  protected val impure: ValuePrimitive => Boolean
  protected val unstable: ValuePrimitive => Boolean

  protected val blockAllocTag: PartialFunction[ValuePrimitive, Literal]
  protected val blockTag: ValuePrimitive
  protected val blockLength: ValuePrimitive

  protected val identity: ValuePrimitive

  protected val leftNeutral: Set[(Literal, ValuePrimitive)]
  protected val rightNeutral: Set[(ValuePrimitive, Literal)]
  protected val leftAbsorbing: Set[(Literal, ValuePrimitive)]
  protected val rightAbsorbing: Set[(ValuePrimitive, Literal)]

  protected val sameArgReduce: PartialFunction[(ValuePrimitive, Atom), Atom]
  protected val sameArgReduceC: TestPrimitive => Boolean

  protected val vEvaluator: PartialFunction[(ValuePrimitive, Seq[Literal]),
                                            Literal]
  protected val cEvaluator: PartialFunction[(TestPrimitive, Seq[Literal]),
                                            Boolean]
}

object CPSOptimizerHigh extends CPSOptimizer(SymbolicCPSTreeModule)
    with (SymbolicCPSTreeModule.Tree => SymbolicCPSTreeModule.Tree) {
  import treeModule._
  import L3Primitive._

  def apply(tree: Tree): Tree =
    rewrite(tree)

  import scala.language.implicitConversions
  private[this] implicit def l3IntToLit(i: L3Int): Literal = IntLit(i)
  private[this] implicit def intToLit(i: Int): Literal = IntLit(L3Int(i))

Sapphie's avatar
Sapphie committed
416
417
  protected val impure: ValuePrimitive => Boolean =
    Set(ByteRead, ByteWrite, BlockSet)
Sapphie's avatar
Sapphie committed
418

Sapphie's avatar
Sapphie committed
419
420
421
422
  protected val unstable: ValuePrimitive => Boolean = {
    case BlockAlloc(_) | BlockGet | ByteRead => true
    case _ => false 
  }
Sapphie's avatar
Sapphie committed
423

Sapphie's avatar
Sapphie committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
  protected val blockAllocTag: PartialFunction[ValuePrimitive, Literal] = {
    case BlockAlloc(t) => t
  }
  protected val blockTag: ValuePrimitive = BlockTag
  protected val blockLength: ValuePrimitive = BlockLength

  protected val identity: ValuePrimitive = Id

  protected val leftNeutral: Set[(Literal, ValuePrimitive)] = Set(
    (IntLit(L3Int(0)), IntAdd),
    (IntLit(L3Int(1)), IntMul),
    (IntLit(L3Int((-1 << 1) >> 1)), IntBitwiseAnd),
    (IntLit(L3Int(0)), IntBitwiseOr),
    (IntLit(L3Int(0)), IntBitwiseXOr)
  )
  protected val rightNeutral: Set[(ValuePrimitive, Literal)] = Set(
    (IntAdd, IntLit(L3Int(0))),
    (IntSub, IntLit(L3Int(0))),
    (IntMul, IntLit(L3Int(1))),
    (IntDiv, IntLit(L3Int(1))),
    (IntShiftLeft, IntLit(L3Int(0))),
    (IntShiftRight, IntLit(L3Int(0))),
    (IntBitwiseAnd, IntLit(L3Int((-1 << 1) >> 1))),
    (IntBitwiseOr, IntLit(L3Int(0))),
    (IntBitwiseXOr, IntLit(L3Int(0))),
  )

  protected val leftAbsorbing: Set[(Literal, ValuePrimitive)] = Set(
    (IntLit(L3Int(0)), IntMul),
    (IntLit(L3Int(0)), IntMod),
    (IntLit(L3Int(0)), IntBitwiseAnd),
    (IntLit(L3Int((-1 << 1) >> 1)), IntBitwiseOr),
    (IntLit(L3Int(0)), IntShiftLeft),
    (IntLit(L3Int(0)), IntShiftRight)
  )

  protected val rightAbsorbing: Set[(ValuePrimitive, Literal)] = Set(
    (IntMul, IntLit(L3Int(0))),
    (IntBitwiseAnd, IntLit(L3Int(0))),
    (IntBitwiseOr, IntLit(L3Int((-1 << 1) >> 1)))
  )

  protected val sameArgReduce: PartialFunction[(ValuePrimitive, Atom), Atom] = {
    case (IntBitwiseAnd | IntBitwiseOr, a) => a
    case (IntSub | IntBitwiseXOr | IntMod, _) => AtomL(IntLit(L3Int(0)))
    case (IntDiv, _) => AtomL(IntLit(L3Int(1)))
  }
Sapphie's avatar
Sapphie committed
471
472


Sapphie's avatar
Sapphie committed
473
474
475
476
  protected val sameArgReduceC: PartialFunction[TestPrimitive, Boolean] = {
    case IntLt => false
    case IntLe | Eq => true
  }
Sapphie's avatar
Sapphie committed
477
478

  protected val vEvaluator: PartialFunction[(ValuePrimitive, Seq[Literal]),
Sapphie's avatar
Sapphie committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
                                            Literal] = {
    case (vPrim, Seq(IntLit(x), IntLit(y))) => vPrim match {
      case IntAdd => IntLit(x + y)
      case IntSub => IntLit(x - y)
      case IntMod => IntLit(x % y)
      case IntDiv => IntLit(x / y)
      case IntMul => IntLit(x * y)
      case IntBitwiseAnd => IntLit(x & y)
      case IntBitwiseOr => IntLit(x | y)
      case IntBitwiseXOr => IntLit(x ^ y)
      case IntShiftLeft => IntLit(x << y)
      case IntShiftRight => IntLit(x >> y)
    }
  }
Sapphie's avatar
Sapphie committed
493
494

  protected val cEvaluator: PartialFunction[(TestPrimitive, Seq[Literal]),
Sapphie's avatar
Sapphie committed
495
496
497
498
499
                                            Boolean] = {
    case (IntLe, Seq(IntLit(x), IntLit(y))) => x <= y
    case (IntLt, Seq(IntLit(x), IntLit(y))) => x < y
    case (Eq, Seq(l1, l2)) => l1 == l2
  }
Sapphie's avatar
Sapphie committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
}

object CPSOptimizerLow extends CPSOptimizer(SymbolicCPSTreeModuleLow)
    with (SymbolicCPSTreeModuleLow.LetF => SymbolicCPSTreeModuleLow.LetF) {
  import treeModule._
  import CPSValuePrimitive._
  import CPSTestPrimitive._

  def apply(tree: LetF): LetF = rewrite(tree) match {
    case tree @ LetF(_, _) => tree
    case other => LetF(Seq(), other)
  }

  protected val impure: ValuePrimitive => Boolean =
    Set(BlockSet, ByteRead, ByteWrite)

  protected val unstable: ValuePrimitive => Boolean = {
    case BlockAlloc(_) | BlockGet | ByteRead => true
    case _ => false
  }

  protected val blockAllocTag: PartialFunction[ValuePrimitive, Literal] = {
    case BlockAlloc(tag) => tag
  }
  protected val blockTag: ValuePrimitive = BlockTag
  protected val blockLength: ValuePrimitive = BlockLength

  protected val identity: ValuePrimitive = Id

  protected val leftNeutral: Set[(Literal, ValuePrimitive)] =
    Set((0, Add), (1, Mul), (~0, And), (0, Or), (0, XOr))
  protected val rightNeutral: Set[(ValuePrimitive, Literal)] =
    Set((Add, 0), (Sub, 0), (Mul, 1), (Div, 1),
        (ShiftLeft, 0), (ShiftRight, 0),
        (And, ~0), (Or, 0), (XOr, 0))

  protected val leftAbsorbing: Set[(Literal, ValuePrimitive)] =
    Set((0, Mul), (0, Div),
        (0, ShiftLeft), (0, ShiftRight),
        (0, And), (~0, Or))
  protected val rightAbsorbing: Set[(ValuePrimitive, Literal)] =
    Set((Mul, 0), (And, 0), (Or, ~0))

  protected val sameArgReduce: PartialFunction[(ValuePrimitive, Atom), Atom] = {
    case (And | Or, a) => a
    case (Sub | Mod | XOr, _) => AtomL(0)
    case (Div, _) => AtomL(1)
  }

  protected val sameArgReduceC: PartialFunction[TestPrimitive, Boolean] = {
    case Le | Eq => true
    case Lt => false
  }

  protected val vEvaluator: PartialFunction[(ValuePrimitive, Seq[Literal]),
                                            Literal] = {
    case (Add, Seq(x, y)) => x + y
    case (Sub, Seq(x, y)) => x - y
    case (Mul, Seq(x, y)) => x * y
    case (Div, Seq(x, y)) if y.toInt != 0 => x / y
    case (Mod, Seq(x, y)) if y.toInt != 0 => x % y

    case (ShiftLeft,  Seq(x, y)) => x << y
    case (ShiftRight, Seq(x, y)) => x >> y
    case (And, Seq(x, y)) => x & y
    case (Or,  Seq(x, y)) => x | y
    case (XOr, Seq(x, y)) => x ^ y
  }

  protected val cEvaluator: PartialFunction[(TestPrimitive, Seq[Literal]),
                                            Boolean] = {
    case (Lt, Seq(x, y)) => x < y
    case (Le, Seq(x, y)) => x <= y
    case (Eq, Seq(x, y)) => x == y
  }
}