From dd8187bba2f01d406ee2c4fd1965b1c431d0e6db Mon Sep 17 00:00:00 2001 From: Nicolas Aspert <nicolas.aspert@epfl.ch> Date: Tue, 18 Mar 2025 11:33:12 +0100 Subject: [PATCH] add week 5 --- .../Linear systems - Poisson equation.ipynb | 673 ++++++++++++++++++ 1 file changed, 673 insertions(+) create mode 100644 exercises/week05/Linear systems - Poisson equation.ipynb diff --git a/exercises/week05/Linear systems - Poisson equation.ipynb b/exercises/week05/Linear systems - Poisson equation.ipynb new file mode 100644 index 0000000..523959f --- /dev/null +++ b/exercises/week05/Linear systems - Poisson equation.ipynb @@ -0,0 +1,673 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "044b8034", + "metadata": { + "deletable": false, + "editable": false + }, + "outputs": [], + "source": [ + "# Initialize Otter\n", + "import otter\n", + "grader = otter.Notebook(\"Linear systems - Poisson equation.ipynb\")" + ] + }, + { + "cell_type": "markdown", + "id": "d133bce9-d159-4b1d-a25f-69bed8da493a", + "metadata": {}, + "source": [ + "# Matrix Analysis 2025 - EE312\n", + "\n", + "## Week 5 - Discrete Poisson equation \n", + "[LTS2](https://lts2.epfl.ch)\n", + "\n", + "### Objectives\n", + "Apply your knowledge about linear systems to Poisson equation resolution." + ] + }, + { + "cell_type": "markdown", + "id": "654ad4ee-c060-4bc3-b218-3a6709952750", + "metadata": { + "tags": [] + }, + "source": [ + "## Poisson equation\n", + "Let $u,v \\in \\mathbb{R}^n$ represent a physical quantity $f$ and $g: \\mathbb{R} \\mapsto \\mathbb{R}$ sampled at $n$ equi-spaced locations $x_i$, i.e $u_i = f(x_i)$, $v_i = g(x_i)$. \n", + "\n", + "Let us assume that the underlying continuous object satisfies the Poisson equation: $\\frac{d^2}{dx^2} f (x)= g(x)$ with constraints $f(x_j) = y_j$ for a subset of $m$ locations $j \\in \\{i_1, \\ldots i_m \\}$. \n", + "\n", + "We will assume that **all the $i_k$ are distinct**.\n", + "\n", + "This equation governs a number of physical principles, e.g. gravity, fluid mechanics and electrostatics. In the latter we have $\\Delta \\varphi = -\\frac{\\rho}{\\varepsilon}$, where $\\Delta$ is the Laplacian operator $(\\frac{d^2}{dx^2} + \\frac{d^2}{dy^2} + \\frac{d^2}{dz^2})$, $\\varphi$ is the electric potential, $\\rho$ the density of electric charges and $\\varepsilon$ the electric permittivity.\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "id": "06ac5cfa-62ef-4477-a957-e240ddeb85d8", + "metadata": {}, + "source": [ + "### 1D case" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7f3cb74d-72f0-460b-a978-a47f87de8557", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "9fd89d0b-50df-4711-a32b-ec1026e6b122", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- BEGIN QUESTION -->\n", + "\n", + "1. Write down a matrix equation for the discrete version of $\\frac{d^2}{dx^2} f (x)= g(x)$, using the finite-difference approximation of the derivative $\\frac{d^2}{dx^2} f = f(x_{k+1}) - 2f(x_k) +f(x_{k-1})$. For the boundary conditions we will make the assumption that $x_{-1}=x_0$ and $x_{n-1}=x_n$ (also referred to as Dirichlet boundary conditions)\n", + "\n", + "What is the rank of the corresponding matrix $D$ ? " + ] + }, + { + "cell_type": "markdown", + "id": "d1f8bd46", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "markdown", + "id": "aed76fe2-8cb5-4b28-bd3b-fa0bea113a46", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<Your answers here>" + ] + }, + { + "cell_type": "markdown", + "id": "cceac118-c43d-4782-9f7e-4392e5ecc451", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "2. Implement a function that creates the $D$ matrix (also called Laplacian). The [diag](https://numpy.org/doc/stable/reference/generated/numpy.diag.html) function in numpy might be useful." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d41105d8-6933-4ef8-b2f0-c6ac053e1f55", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "def lapl_matrix(N):\n", + " ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "756d9370", + "metadata": { + "deletable": false, + "editable": false + }, + "outputs": [], + "source": [ + "grader.check(\"q2\")" + ] + }, + { + "cell_type": "markdown", + "id": "4cea41dc-6f12-42f2-8644-b51e4918504d", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- BEGIN QUESTION -->\n", + "\n", + "3. Write down a matrix equation for the discrete version of $f(x_j) = y_j$. What is the rank of the corresponding matrix $B$ ?" + ] + }, + { + "cell_type": "markdown", + "id": "fc67bfcb", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "markdown", + "id": "418bc83f-7d46-41c2-8a7e-df892857320c", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "4. Implement a function that creates matrix $B$" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1d294eda-7edc-42c2-9640-13bec779bd48", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "def b_matrix(N, idx_list): # idx_list is a list of valid indices, e.g. N=5, idx_list=[1,3]\n", + " ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d592616d", + "metadata": { + "deletable": false, + "editable": false + }, + "outputs": [], + "source": [ + "grader.check(\"q4\")" + ] + }, + { + "cell_type": "markdown", + "id": "b77f215e-e4d0-4976-9ed6-7ee210c689a6", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- BEGIN QUESTION -->\n", + "\n", + "3. Write down a matrix equation for the full problem (Hint: Consider the matrix $C=\\begin{pmatrix}D\\\\B\\end{pmatrix}$). Discuss the rank of the matrix and deduce a way to numerically solve the linear system. Implement a function that returns matrix $C$." + ] + }, + { + "cell_type": "markdown", + "id": "70f5637a", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2eaf5a8c-b83a-4f53-9c4e-6192bf4e6fa4", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "def c_matrix(D, B):\n", + " ..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d77116d4", + "metadata": { + "deletable": false, + "editable": false + }, + "outputs": [], + "source": [ + "grader.check(\"q4\")" + ] + }, + { + "cell_type": "markdown", + "id": "10a3d136-f5f3-4c1b-9c0a-ece58f891dfe", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "5. What explicit formula can you use to compute the pseudo-inverse of $C$ (justify)?" + ] + }, + { + "cell_type": "markdown", + "id": "ce8aa19a", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "markdown", + "id": "3726eb03-0c82-4aed-b179-77ff947583c3", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "6. Implement a function that return the solution of the problem. You can either use the formula above (you may then use the [linalg.inv](https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html) or compute the pseudo-inverse using [linalg.pinv](https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "79f8c6d1-7b92-48b6-bb90-e888aaa41243", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "# v is a vector of size N\n", + "# u is a vector of size len(idx_list)\n", + "def solve_poisson(N, v, idx_list, u): \n", + " ..." + ] + }, + { + "cell_type": "markdown", + "id": "ff6184e1-e308-47d1-8b72-ab4559b48adb", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "7. Let us now consider the solutions of the particular case $g(x) = 0, \\forall x\\in\\mathbb{R}$. What are the analytical solutions that would solve Poisson equation ?" + ] + }, + { + "cell_type": "markdown", + "id": "53e63141", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "markdown", + "id": "4a33db39-077d-4775-a55d-ae5bd7400b23", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "Let us verify that our implementation of the solution works with a small example. Fill the values for $u$ s.t. they belong to the solution space." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "96381701-e737-41c1-8642-fa1a5c13924c", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "N = 50\n", + "v = np.zeros(N)\n", + "idx_list = [10, 20, 30, 40]\n", + "u = ...\n", + "sol = solve_poisson(N, v, idx_list, u)\n", + "plt.plot(sol) # plot the result" + ] + }, + { + "cell_type": "markdown", + "id": "04e6fc55-6c8a-4dfa-8ca0-9b45ed2f157c", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "9. Are the results conform to what we expected ? What happens near the boundaries ?" + ] + }, + { + "cell_type": "markdown", + "id": "e1c9c95f", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "markdown", + "id": "ecf46b87-accd-4043-8ab6-06835830699b", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "10. Let us use a step function for $f$ and try to solve the system" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d81b4501-b2a5-4412-a266-d04ffa8dd2c7", + "metadata": { + "deletable": false, + "editable": false + }, + "outputs": [], + "source": [ + "idx_list = [10, 20, 30, 40]\n", + "u2 = [1, 1, -1, -1]\n", + "sol2 = solve_poisson(N, v, idx_list, u2)\n", + "plt.scatter(idx_list, u2, marker='+', color='r')\n", + "plt.plot(sol2)" + ] + }, + { + "cell_type": "markdown", + "id": "4918d31c-40a2-4df3-88ec-d18a80e879e7", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "What do you observe and what is the reason for that ? " + ] + }, + { + "cell_type": "markdown", + "id": "1482c041", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "markdown", + "id": "b520b2c6-7c84-4c3e-be16-8eb866648a97", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n", + "<!-- BEGIN QUESTION -->\n", + "\n", + "11. Let us now consider the application of the Poisson equation to electrostatic. Knowing a distribution of electric charges, we can solve it to compute the electric potential. The distribution of electric charges will be very simple, consisting of two punctual charges" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "96932aa1-74aa-4f4e-bbf5-df0f0d85c47c", + "metadata": { + "deletable": false, + "editable": false + }, + "outputs": [], + "source": [ + "N = 50\n", + "v3 = np.zeros(N)\n", + "v3[10] = 1\n", + "v3[40] = 1\n", + "plt.plot(v3)" + ] + }, + { + "cell_type": "markdown", + "id": "42861911-53e1-4cb3-8dc7-aa617c01a7e8", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "- What are the analytical solutions for this problem ? (remember the discrete derivative of a step function is a Dirac function, i.e. 0 everywhere except at one point where it is 1). \n", + "- Plot the analytical solution\n", + "- Compute and plot the numerical solution\n", + "- What do you observe ? " + ] + }, + { + "cell_type": "markdown", + "id": "1b19e6d2", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "source": [ + "_Type your answer here, replacing this text._" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f42fc23b-c412-4791-b5b6-bef54fa3bab3", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f2f9bd66-067e-4590-8088-87b7969621bb", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "# Plot analytical solution\n", + "..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "22eae7ab-4c91-4000-b123-7105cc4c023a", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "idx_list = [10, 20, 30, 40]\n", + "u3 = [1, 1, 1, 1]\n", + "sol3 = solve_poisson(N, v3, idx_list, u3)\n", + "plt.scatter(idx_list, u3, marker='+', color='r')\n", + "plt.plot(sol3)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b0310f39-9bbf-4518-be7d-af0e3f6724a7", + "metadata": { + "tags": [ + "otter_answer_cell" + ] + }, + "outputs": [], + "source": [ + "# check the 2nd derivative of the solution computed\n", + "..." + ] + }, + { + "cell_type": "markdown", + "id": "c0f0755f", + "metadata": { + "deletable": false, + "editable": false + }, + "source": [ + "<!-- END QUESTION -->\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.10" + }, + "otter": { + "OK_FORMAT": true, + "tests": { + "q2": { + "name": "q2", + "points": null, + "suites": [ + { + "cases": [ + { + "code": ">>> def testD(N):\n... D = lapl_matrix(N)\n... np.testing.assert_array_almost_equal(np.sum(D, axis=1), np.zeros(N))\n... np.testing.assert_array_almost_equal(np.diagonal(D, 1), np.ones(N - 1))\n... np.testing.assert_array_almost_equal(np.diagonal(D, -1), np.ones(N - 1))\n... v = -2 * np.ones(N)\n... v[0] = -1\n... v[N - 1] = -1\n... np.testing.assert_array_almost_equal(np.diagonal(D), v)\n>>> testD(5)\n>>> testD(12)\n", + "failure_message": "Check your implementation", + "hidden": false, + "locked": false, + "success_message": "Good, results seem correct" + } + ], + "scored": true, + "setup": "", + "teardown": "", + "type": "doctest" + } + ] + }, + "q4": { + "name": "q4", + "points": null, + "suites": [ + { + "cases": [ + { + "code": ">>> B = b_matrix(5, [1, 3])\n>>> Btest = np.array([[0, 1, 0, 0, 0], [0, 0, 0, 1, 0]])\n>>> np.testing.assert_array_almost_equal(B, Btest)\n", + "failure_message": "Check your implementation", + "hidden": false, + "locked": false, + "success_message": "Good, results seem correct" + } + ], + "scored": true, + "setup": "", + "teardown": "", + "type": "doctest" + } + ] + } + } + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} -- GitLab