diff --git a/info/exercises/ex-05-sol.pdf b/info/exercises/ex-05-sol.pdf
index 5b47aca822f60a4d2f4c7b321f48f3cf0134e080..29547edfa18155f1338f4250393965761aeb524f 100644
Binary files a/info/exercises/ex-05-sol.pdf and b/info/exercises/ex-05-sol.pdf differ
diff --git a/info/exercises/ex-05.pdf b/info/exercises/ex-05.pdf
index 355627556465d0f4378f51da10258130bb6b96ed..a02b25a98d7fddfa38dcf3d9b2b3370ab920c5a8 100644
Binary files a/info/exercises/ex-05.pdf and b/info/exercises/ex-05.pdf differ
diff --git a/info/exercises/src/ex-05/ex/map.tex b/info/exercises/src/ex-05/ex/map.tex
index 7c487fc7b7c117eea6831e637ab486a33e6c6aa2..2bcd54711077a5e8bfcb6c37b3a63e893416d39e 100644
--- a/info/exercises/src/ex-05/ex/map.tex
+++ b/info/exercises/src/ex-05/ex/map.tex
@@ -3,7 +3,7 @@
   Consider the following term \(t\):
   %
   \begin{center}
-    \(t = \) \lstinline{l =>  map(l, x =>  fst(x)(snd(x))  + snd(x))}
+    \(t = \) \lstinline{l =>  map(l)(x =>  fst(x)(snd(x))  + snd(x))}
     % t = \lstinline|l| ~\ato~ \lstinline|map|(\lstinline|l|, \lstinline|x| ~\ato~ \afst{\lstinline|x|}(\asnd{\lstinline|x|}) + \asnd{\lstinline|x|})
   \end{center}
 
@@ -21,8 +21,8 @@
     \begin{enumerate}
       \item We can label the subterms in the following way:
       \begin{gather}
-        t: \tau = \lstinline|l =>  map(l, x =>  fst(x)(snd(x))  + snd(x))| \\
-        t_1: \tau_1 = \lstinline|map(l, x =>  fst(x)(snd(x))  + snd(x))| \\
+        t: \tau = \lstinline|l =>  map(l)(x =>  fst(x)(snd(x))  + snd(x))| \\
+        t_1: \tau_1 = \lstinline|map(l)(x =>  fst(x)(snd(x))  + snd(x))| \\
         t_2: \tau_2 = \lstinline|x =>  fst(x)(snd(x))  + snd(x)| \\
         t_3: \tau_3 = \lstinline|fst(x)(snd(x)) + snd(x)| \\
         t_4: \tau_4 = \lstinline|fst(x)(snd(x))| \\
diff --git a/info/exercises/src/ex-05/ex/program.tex b/info/exercises/src/ex-05/ex/program.tex
index 137669d10e938a4c7dec1f329cc90fe36953acc2..da325c633a7fcc39d88dbaa26c48be1aba890371 100644
--- a/info/exercises/src/ex-05/ex/program.tex
+++ b/info/exercises/src/ex-05/ex/program.tex
@@ -10,7 +10,7 @@
   body is well-typed:
   %
   \begin{enumerate}
-    \item \lstinline|def f(x: Int, y: Int): Bool =  x <= y|
+    \item \lstinline|def f(x: Int)(y: Int): Bool =  x <= y|
     \item \lstinline|def rec(x: Int): Int =  rec(x)|
     \item \lstinline|def fib(n: Int): Int = if n <=  1 then 1 else (fib(n - 1)  + fib(n - 2))|
   \end{enumerate}
diff --git a/info/exercises/src/ex-05/ex/rec-inf.tex b/info/exercises/src/ex-05/ex/rec-inf.tex
index c5364bbf63032dbcf9f172761def4e9fe958fe00..9f2523a10fcf203e88f2af676d574b35b01102cd 100644
--- a/info/exercises/src/ex-05/ex/rec-inf.tex
+++ b/info/exercises/src/ex-05/ex/rec-inf.tex
@@ -6,11 +6,11 @@
   Consider the following definition for a recursive function \(g\):
 
   \begin{equation*}
-    \lstinline|def g(n, x)  = if n <=  2 then (x, x)  else (x, g(n - 1, x))|
+    \lstinline|def g(n)(x)  = if n <=  2 then (x, x)  else (x, g(n - 1)(x))|
   \end{equation*}
 
   \begin{enumerate}
-    \item Evaluate \(g(3, 1)\) and \(g(4, 2)\) using the definition of \(g\).
+    \item Evaluate \(g(3)(1)\) and \(g(4)(2)\) using the definition of \(g\).
       Suggest a type for the function \(g\) based on your observations.
     \item Label and assign type variables to the definition parameters, body,
       and its subterms.
@@ -22,8 +22,8 @@
   
   \begin{solution}
     \begin{enumerate}
-      \item \lstinline|g(3, 1)| evaluates to \lstinline|(1, (1, 1))| and
-      \lstinline|g(4, 2)| evaluates to \lstinline|(2, (2, (2, 2)))|. Notably,
+      \item \lstinline|g(3)(1)| evaluates to \lstinline|(1, (1, 1))| and
+      \lstinline|g(4)(2)| evaluates to \lstinline|(2, (2, (2, 2)))|. Notably,
       these two come from disjoint types. This suggests that the function \(g\)
       is not well-typed.
       \item We can label the parameters, subterms, and assign a type to the
@@ -33,11 +33,11 @@
         \lstinline|g|: \tau \\
         \lstinline|n|: \tau_n \\
         \lstinline|x|: \tau_x \\
-        body: \tau_1 = \lstinline|if n <=  2 then (x, x)  else (x, g(n - 1, x))| \\
+        body: \tau_1 = \lstinline|if n <=  2 then (x, x)  else (x, g(n - 1)(x))| \\
         t_1: \tau_2 = \lstinline|n <=  2| \\
         t_2: \tau_3 = \lstinline|(x, x)| \\
-        t_3: \tau_4 = \lstinline|(x, g(n - 1, x))| \\
-        t_4: \tau_5 = \lstinline|g(n - 1, x)| \\
+        t_3: \tau_4 = \lstinline|(x, g(n - 1)(x))| \\
+        t_4: \tau_5 = \lstinline|g(n - 1)(x)| \\
         t_5: \tau_6 = \lstinline|n - 1|
       \end{gather}
       \item We can generate the constraints by looking at the top-level of each