CS 320
Computer Language Processing
Exercise Set 1

February 28, 2025

1 Languages and Automata
Exercise 1 Consider the following languages defined by regular expressions:
1. {a,ab}*
2. {aa}* U{aaa}*
3. atht
and the following languages defined in set-builder notation:
{w|Vi.0 <i<|w|Awgy =b = (i >0Awg_1) =a)}
{w|Vi0<i<|w| -1 = wg =b = wiq) = a}
{w]3i.0 <i < |w| ANwgy =bAwi—1) = a}
{w](lw[=0 mod 2V |w|=0 mod 3) AVi.0 <i< |w| = wy = a}

{w | Vi.0 <i<|w| —=1ANwy =a = wiq) = b}

W =5 9 o w >

{fw] 30 <i<|w-1TANVyO<y<i = wy =a)A(Vyi<y<
jw| = wgy) =0b)}

For each pair (e.g. 1-A), check whether the two languages are equal, provid-
ing a proof if they are, and a counterexample word that is in one but not the
other if unequal.

Exercise 2 For each the following languages, construct an NFA A that rec-
ognizes them, i.e. L(A) = L;:

1. L;: binary strings divisible by 3
2. Ls: binary strings divisible by 4
3. Lj: {(w1 @wg) | wy € L1 ANwg € Lo A \wl\ = |’LU2|}

where & is the bitwise-xor operation on binary strings.

Exercise 3 Give a verbal and a set-notational description of the language
accepted by each of the following automata. You can assume that the alphabet
is ¥ = {a, b}.

1. A
b b a,b
a A a
start q0 q1 q2
O/
2. Ao
2 Lexing

Consider a simple arithmetic language that allows you to compute one arith-
metic expression, construct conditionals, and let-bind expressions. An example
program is:

let x = 3 in
let y = ite (x > 0) (x * x) 0 in
(2 *xx) +y

The lexer for this language must recognize the following tokens:

keyword: let|in|ite
op: +[=[x][/
comp: > |<| =] <= >=
equal: =

lparen: (

rparen:)
id: letter - (letter | digit)*

number : digit™

skip: whitespace

For simplicity, letter is a shorthand for the set of all English lowercase letters
{a — z} and digit is a shorthand for the set of all decimal digits {0 — 9}.

Exercise 4 For each of the tokens above, construct an NFA that recognizes
strings matching its regular expression.

A lexer is constructed by combining the NFAs for each of the tokens in
parallel, assuming maximum munch. The resulting token is the first NFA in the
token order that accepts a prefix of the string. Thus, tokens listed first have
higher priority. We then continue lexing the remaining string. You may assume
that the lexer drops any skip tokens.

Exercise 5 For each of the following strings, write down the sequence of tokens
that would be produced by the constructed lexer, if it succeeds.

1.
2.

5.

3.
4

let x =5 in x + 3

letbx2

xin

<===><==

Exercise 6 Construct a string that would be lexed differently if we ran the
NFAs in parallel and instead of using token priority, simply picked the longest
match.

