CS 320
Computer Language Processing
Exercise Set 5

April 02, 2025

Consider a type system for a simple functional language, consisting of inte-
gers, booleans, parametric pairs, and lists. The rest of the exercises will revolve
around this system.

(z,7) el (var)
I'tax:7 var
n is an integer value (int)
in
I'n:int
eq : int €9 @ int ep :int €9 @ int
(+) (-)

I'Fe; +es:int
b is a boolean value

bool

'k bool(b) : bool (00)

I'ey —es:int

' e : bool I'F es : bool (and) ' e; : bool I'F es : bool (or)
I'te; Aes:bool I'key Ves:bool
I'F e : bool
' —e; : bool (not)
I'kel:r I'key:r (cq) I'ke;:int I'es:int (Ite)
' ey=es : bool 4 T'F ej<=ey : bool
I'F e : bool I'Fey: 7 I'kes:7 .
: (ite)
I't if e; thenegelsees : T
F|_612T1 F"€227‘2 (palr)
Tk (e1,e2): (11,72)
I'kFe: I'ke:
Treimm) g Lhestmm)
Tk fst(e):n 'k snd(e) : 12
. I'ke :7 I'tes:List[7]
1
I'FNil(Q : List[7] (nil) I' - Cons(eq, e2) : List[7] (cons)
Tx:mmbe:n I'Fel:m=>m I'kFey:m
(fun) (app)

FTFXx:mp=>e:m =>m I'Feley:m

Exercise 1 For each of the following term-type pairs (¢, 7), check whether the
term can be ascribed with the given type, i.e., whether there exists a derivation
of I' -t : 7 for some typing context I' in the given system. If not, briefly argue
why.

1. x,bool
2. x4+ 1,int
3. (x & y) == (x <= 0),bool

4. £ =>x=>y=>£(x, y)):

((List[Int], Bool)=>Int)=>List[Int] =>Bool =>Int

5. Cons(x, x) : List[List[Int]]

Solution
1. x, Bool. Derivation, assume x is a boolean:

(x,bool) € {(x,bool)}
{(x,boo0l)} F x: Bool

Note that this would work with any type, as there are no constraints.

2. x4 1,int. Derivation, assume x is an integer:

(x,int) € {(x, int)} leN
{(x,int)} F x: Int {(x,int)} F 1: Int
{(x,int)} Fx + 1:Int

Due to addition constraining the type of x, other possible types would not
work.

3. (x & y) == (x <= 0),bool. Not well-typed. From the left-hand side, we
would enforce that x: Bool, but on the right, we find x: Int. Due to this
conflict, there is no valid derivation for this term.

4. £ =>x =>y =>£((x, y)): this is the currying function. Note that it will
conform to ((a, b)=>¢) =>a =>b =>c for any choice of a, b, and c. (check)

5. Cons(x, x) : List[List[Int]]. Not well-typed. The cons rule tells
us that the second argument must have the same type as the result,
S0 x: List[List[Int]], but the first argument enforces the type to be
List[Int] (again, due to result type). As int # List[int], this is not
well-typed.

Note that the singular assignment of x to Nil() can make a well typed
term here, but the typing must hold for all possible values of x.

O

Exercise 2 A program is a top-level expression t accompanied by a set of user-
provided function definitions. The program is well-typed if each of the function
bodies conform to the type of the function, and the top-level expression is well-
typed in the context of the function definitions.

For each of the following function definitions, check whether the function

body is well-typed:

1. def f(x:Int)(y:Int):Bool =x <=y

2. def rec(x:Int):Int =rec(x)

3. def fib(n:Int):Int =if n <=1 then 1 else (fib(n - 1)+ fib(n - 2))
Solution

1. Well-typed, apply rule Leq.

2.

Well-typed. We need to check if the body conforms to the output type, if
we know the function and its parameters have their ascribed type. So, un-
der the context rec: Int =>Int, x:Int, we need to prove that rec(x):Int.
This follows from the app rule.

So, if we allow recursion and do not check for termination, we can prove
unexpected things using the non-terminating programs.

Well-typed. We need to produce a derivation of the following:
fib: Int =>Int,n: Int - if n <=1 then 1 else (fib(n - 1)+ fib(n - 2))

i.e., given that £ib inductively has type Int =>Int and the parameter n has
type Int, we need to prove that the body of the function has the ascribed
type Int.

The derivation can be constructed by following the structure of the term
on the right-hand side, the body. We set I' = fib: Int =>Int,n: Int for
brevity. The n-2 branch is skipped due to space and being the same as
the n-1 branch.

:Int

(n,int) €T 1eN
(fib, Int =>Int) €' [Fon: Int Tk 1: Int
(n,int) € T 1eN ' fib: Int =>Int ' (- 1):Int
I'Fn: Int I'F1: Int 1eN I'F fib(n - 1):Int I'+ fib(n - 2):Int
I'n <=1: Bool I'-1: Int ' fib(n - 1)+ fib(n - 2):Int

I'Fif n <=1 then 1 else (fib(n - 1)+ fib(n - 2)):Int
O

Exercise 3 Consider the following term t¢:

t =1 => map(l) (x =>fst(x) (snd(x))+ snd(x))

where map is a function with type V7, 7. List[7] => (7 => m) => List[7].

1.
2.

Label and assign type variables to each subterm of .

Generate the constraints on the type variables, assuming ¢ is well-typed,
to infer the type of t.

Solve the constraints via unification to deduce the type of t.

Solution

1. We can label the subterms in the following way:

t:7 =1 =>map(l) (x =>fst(x) (snd(x))+ snd(x))
t1 : 71 = map(1) (x =>fst(x) (snd(x))+ snd(x))
to 1 79 = x =>fst(x) (snd(x))+ snd(x)

AAAA,_\A/.\/.\,_\
(2NN
N NN SN NS NGNS N NI

t3 : 73 = £st(x) (snd(x))+ snd(x)
ty 1 T4 = fst(x) (snd(x))

ts : 75 = snd(x) 6
tg : T6 = fst(x) 7
l:77=1 8
X:Tg =X 9
map : T9 = map (10

We can choose to separately label x, 1, and map, but it does not make any
difference to the result.

2. Inserting the type of map (thus removing 79), and adding constraints by
looking at the top-level of each subterm, we can get the set of initial
constraints, labelled by the subterm equation above they come from:

Ut

Te = T => T4
/
78 = (75, 75)

78 = (76, 76)

T=Tr =T (1)
71 = List [73] (2, 4)
77 = List [73] (2,9)
Ty = Tg => T3 3)
T3 = int 4)
T4 = int 4)
T5 = int)

)

)

)

AAA&AA/-\

for fresh type variables 7/ and 7§ arising from the rule for pairs.
3. The constraints can be solved step-by-step (major steps shown):
(a) Eliminating known types (73,74, 75):

T=T7r=>T
71 = List[int]
T7 = List [7'8]

To = 78 => int
Te = int => int
73 = (7%, int)

78 = (76, T6)

(b) Eliminating 7, 7¢:

T = 77 => List [int]
77 = List [713x]
To = 78 => int
73 = (74, int)

73 = (int => int, 7¢)
(¢) Eliminating 7g using either of its equations:

T = 77 => List [int]
77 = List [(7%, int)]
Ty = (7%, int) => int

(7%, int) = (int => int, 7¢)
(d) Performing unification of the pair type:

T = 77 => List [int]

77 = List [(7%, int)]

Ty = (Té, int) => int
Té = int => int

int = ’ré
(e) Eliminating 77 and 74:

T = 77 => List [int]
77 = List[(int => int,int)]

T = (int => int, int) => int
(f) Eliminating 7o, 77:
7 = List[(int => int, int)] => List[int]
(g) Finally, all type variables are assigned, as we eliminate 7:
) (no constraints left)
The type of t as discovered by the unification process is:

7 = List[(int => int, int)] => List[int]

Exercise 4 Consider the following definition for a recursive function g:

def g(n) (x)=if n <=2 then (x, x)else (x, gln - 1)(x))

Evaluate ¢g(3)(1) and g(4)(2) using the definition of g. Suggest a type for
the function g based on your observations.

Label and assign type variables to the definition parameters, body, and
its subterms.

Generate the constraints on the type variables, assuming the definition of
g is well-typed.

Attempt to solve the generated constraints via unification. Argue how the
result correlates to your observations from evaluating g.

Solution

1.

g(3) (1) evaluates to (1, (1, 1)) and g(4) (2) evaluates to (2, (2, (2,
2))). Notably, these two come from disjoint types. This suggests that the
function g is not well-typed.

We can label the parameters, subterms, and assign a type to the function:

g:T 1
n:T, 2
X Ty 3

body : 71 = if n <=2 then (x, x)else (x, g(n - 1)(x))

t1: 79 =n <=2

(=)

ty 173 = (x, x)

EN|

ts 1y = (x, gn - 1))
ty: 75 =gl - 1) (x)

,_\/_\AA,_\A/.\,.\,_\
(@33
NN N N N N NI

ts :T¢ =n - 1

3. We can generate the constraints by looking at the top-level of each subterm

equation:

T =Ty => Ty =>T1 (17 def)
T = T3 (4)

T1 = T4 ()

To = bool ()

Tp, = int (5)

T3 = (Ty, Ty) (6)

74 = (Ta,7s) 6)
=7 (7, def)

Te = int (9)

4. The constraints can be solved (eliminating 74,75) to reach a set of con-
straints containing the recursive constraint 74 = (7, 71). There is no type
71 (the output type of g!) satisfying this.

This matches our previous observation where g produced two different
sized tuples as its output.

O

