CS 320
Computer Language Processing
Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are
equivalent by identifying them with inductive relations, and proving that the
inductive relations contain the same elements.

1. A;:S:=5+ 5| num
Ay:Ru:=num R and R :=+R R’ | ¢
2. By:S5:=8(5)S | €
By:R: —RR|( )| €
Solution
1. As is the result of left-recursion elimination on A;. First, expressing them

as inductive relations, with rules named as on the right:

wy €8 we €8
Snum

_— S
num € S w1+ we € S +

w € S Astart
w e Ay 1

weE R
num w € R

wE R w' € R ’

R — R
4w w' € R + ec R €

Rnum

weR Astm‘t
2
w E Ay

We must show that for any word w, w € A; if and only if w € A,. For this,
it must be the case that there is a derivation tree for w € A; (equivalently,
w € S) if and only if there is a derivation tree for w € Ay (equivalently,
w € R) according to the inference rules above.

(a) we S = w € R: we induct on the depth of the derivation tree.

e Base case: derivation tree of depth 1. The tree must be

— S
num e § ™



We can show that there is a corresponding derivation tree for
w € R:

R
eE€R ;%
nume R "
Inductive case: derivation tree of depth n + 1, given that for
every derivation of depth < n of w’ € S for any w’, there is a
corresponding derivation of w’ € R. The last rule applied in the
derivation must be S :

w; €8 wy € S
w; +wy €8

Sy

By the inductive hypothesis, since w; € S and w; € S have a
derivation tree of smaller depth, there are derivation trees for
w; € R and wy € R. In particular, the derivation for w; € R
must end with the rule Ry, (only case), so there must be a
derivation tree for num w| € R with w| € R’ and num w} = wy.
We have the following pieces:
w/ 6 R/ cen

nuni wy € R Boum w2 € R

To show that w; +wy € R, i.e. num w| +wy € R, we must first
show that w] + we € R', as required by the rule R,.,,. Note
that words in R’ are of the form (+num)*. We will prove this
separately for all pairs of words at the end (R ). Knowing

Lemma
this, however, we can construct the derivation tree for wy +wg €

R:

w) € R wy € R
w’1+w2€R’

num wj +wy € R

/
Lemma

Rnum

num w'l + wy = w1 + wy = w, as required.

Finally, we will show the required lemma. We will prove
a stronger property R, ... first, that for any pair of words
wi,we € R, w; wa € R’ as well. We induct on the derivation of
w; € R.

Base case: derivation ends with R.. Then wy =€, and wy wy =
we € R’ by assumption.

Inductive case: derivation ends with R/,. Then w; = +vv’ for
some v € R and v’ € R":

vER v €R R
+v v e R +
Since v/ € R’ has a smaller derivation tree than w;, by the
inductive hypothesis, we can prove that v wg € R’. We get:

) v €R we € R,
v E R ’U/ wo c R/ R/ concat
+v v wy € R +




So, R, pcqs is proven. We can show Rj, . ie w]+ws € R if
wj € R and we € R as:

/
wy € R ec R ¢

wy € R +wpy € R, +
wll +wy € R/ concat

Thus, the proof is complete.

(b) w e R = w € S: we induct on the depth of the derivation tree
for w € R. This direction is simpler than the other, but the general
method is similar.

« Base case: derivation tree of depth 2 (minimum). The tree must
be
I -
ceER jt{
nume R "M

We have the corresponding derivation tree for w € S:

num € S Snum
o Inductive case: derivation tree of depth n + 1, given that for
every derivation of depth < n of w’ € R for any w’, there is a
corresponding derivation of w’ € S. The last rules applied must
be Ryum and R/, (otherwise the derivation would be of the base
case):

w1 S R W2 € R/ R/
+w; we € R’ R +
num + w; wy € R~

where w = num+w; we. However, we are somewhat stuck here,
as we have no way to relate R’ and S. We will separately show
that if +w’ € R, then there is a derivation of w'inS (lemma
RY). This will allow us to complete the proof:

+w; we € R’
num € S wy we € S g
num + w; wy € S +

num

The proof of the lemma R is by induction again, and not shown
here. This completes the original proof.

2. Argument similar to Exercise Set 2 Problem 4 (same pair of grammars).
By, C B, as relations can be seen by producing a derivation tree for each
possible case in By. For the other direction, By C By, it is first convenient
to prove that Bj is closed under concatenation, i.e., if wi,wy € By then
there is a derivation tree for wy ws € Bj.

O



Exercise 2 Consider the following expression language over naturals, and a
halving operator:

expr ::= half(expr) | expr + expr | num

where num is any natural number constant > 0.

We will design the operational semantics of this language. The semantics
should define rules that apply to as many expressions as possible, while being
subjected to the following safety conditions:

e the semantics should not permit halving unless the argument is even
e they should evaluate operands from left-to-right

Of the given rules below, choose a minimal set that satisfies the conditions
above. A set is not minimal if removing any rule does not change the set of
expressions that can be evaluated by the semantics, i.e. the domain of ~~, {x |
Jy.  ~ y}, remains unchanged. The removed rule is said to be redundant.

e~ e
half(e) ~» ¢’ )
n is a value n =2k
half(n) ~ k (B)
n is a value ()

half(n) ~ | 5]

half(e) ~ half(e’)
half(e) ~ €’

half(ej : Ealf(e’) (E)

e’ ~ half(e)
half(e) ~ ¢

ny is a value ny is a value ny+ng =k ny is odd @)
ny +ng ~ k

e~ e n is a value (H)
n+e~n-+e

eg ~ €

/
e1 t+ ez~ e+ ey

ny is a value ny is a value ny+ng =k ni,MNo are even )
ny+ng ~k

ny is a value no is a value ny+ng =k
ny +ng ~ k




e ~ e

/
€1 +eg v ep+ e

Solution A possible such minimal set of rules is {B, F, H, K, L}.
On what happens when the other rules are added to this set:

A: incorrect; allows deducing half(half(10)) ~» 5 with rule B.

C: incorrect; allows deducing half(3) ~- 1.

D: incorrect; allows deducing half (half(10)) ~» 5 with rules B and E.
F: redundant; reverses a reduction.

G: redundant; special case of rule K.

I: incorrect; does not reduce the expression left-to-right.

J: redundant; special case of rule K.

O

Exercise 3 Consider a simple programming language with integer arithmetic,
boolean expressions, and user-defined functions:

expr = true | false | num
expr == expr | expr + expr
expr && expr | if (expr) expr else expr
f(expr,... expr) |z

where f represents a (user-defined) function, x represents a variable, and num
represents an integer.

1.

Inductively define a substitution operation for the terms in this language,
which replaces every free occurrence of a variable x with a given expression
e.

The rule for substitution in an addition is provided as an example. Here,
t[z := e] represents the term ¢, with every free occurrence of  simultane-
ously replaced by e.

tifz:=e] = ] tolz :=e] — t}
t1 +tafr =€) = t] +th

Write the rules for the operational semantics for this language, assum-
ing call-by-name semantics for function calls. In call-by-name semantics,
function arguments are not evaluated before the call. Instead, the param-
eters are merely substituted into the function body. You may assume that
function parameters are named distinctly from variables in the program.



3. Under the following environment (with function names, parameters, and
bodies):

(sum, [z],if (x ==0) then 0 else x + sum(xz + (—1)))

(rec,[],rec())
(default,[b,x],if b then x else 0)

evaluate each of the following expressions, showing the derivations:

How would the evaluations in each case change if we used call-by-value
semantics instead?

Solution

1. Substitution rules:

true[r := e] — true

false[z :=e] — false

numz := e¢] - num

tijz:=e] = ] tolz :=e] — t}
th ==tilx:=¢] >t ==t}
tifz:=e] = ] tolz :=e] — t}
t1 +tafr =€) = t] +th
tifz:=e] = ] tolz :=e] — t}
t1 && tofx = €] =t &&
tifz:=e] = ] tolz :=e] — t} ts[z:=e] >t}
if (t1) to else ts[x =€) = if (t}) th else t}
tilz :=e] = t] ty[r =] =t

fltr, .. to)[x =€) = f(t],...,t))

x[r:=e€] > e

_rFy
ylx :=¢] =y
2. Operational semantics:
o Equality:
tl ~ tll
tl == t2 S tll == t2



ny is an integer value to ~ th

n|y == t2 ~r N == t/2
n1, N9 are integer values ni = Ng

ny == ng ~ true
n1,No are integer values ny # na

ny == ngy ~ false

o Addition:
tl ~ tll
t1 +tg ~ tll + to
n is an integer value to ~ th
n+to ~n+th
n1,ng are integer values ny+ne ==k

niy +ng ~ k
o Conjunction:
tl ~ tll
tl && t2 ~ tll && t2
true && t ~~t
false && t ~~ false

o Conditionals:

tl ~ tll
if (t1) to else tg ~ if (t}) t2 else t3

if (true) ty else tg ~ to

if (false) ty else tz ~ ts

o Function call:
by is the body of f
(z1,...,2n) are parameters of f
bo[iﬂl = tl] — bl e bn,l[xn = tn] — bn
f(t17~ .. ,tn) ~ bn

3. Evaluations:
(a) sum(2) ~ 3:

)
sum(2)
~if (2==0) then 0 else 2 + sum(2 + (—1))
~ if (false) then 0 else 2 + sum(2 + (—1))
~ 24 sum(2 4 (1))
~244f ((2+ (=1)) == 0) then 0 else 2+ (—1) + sum(2 + (—1) + (1))
~244f (1 ==0) then 0 else 2+ (—=1) + sum(2+ (—1) + (-1))



~ 2+if (false) then 0 else 24 (—1) + sum(2 + (—1) + (—1))
24 (24 (=1) +sum(2+ (1) + (-1)))

~ 24 (1+0)
~ 241
~ 3

(b) sum(sum(0)) ~ 0:

sum(sum(0))

~ if (sum(0) == 0) then 0 else 0+ sum(sum(0) 4+ (—1))
~ ... (expand sum(0) in the conditional)

~if (0 ==0) then 0 else 0+ sum(sum(0) + (—1))

~ if (true) then 0 else 0+ sum(sum(0) + (—1))

~ 0

(¢) if (1 ==2) then 3 else 4 ~ 4.

(d) rec() ~ rec() (infinite loop).

(e) default(false,rec()) ~ 0.
Under call-by-value-semantics, the structure of the evaluations would be
different. In sum(sum(0)), we would evaluate the inner sum(0) to 0 before

evaluating the outer sum(-). In default(false,rec()), we would need to
evaluate rec(), which would lead to an infinite loop.

O

Exercise 4 Consider the following type system for a language with integers,
conditionals, pairs, and functions:

n is an integer literal z:7el

I'+n:Int Nz:7
I'ey:Int I'ey:Int
I'Fe; +e:Int
I'keq:Int I'keg:Int
I'ep Xey:Int
b is a boolean literal I' e : Bool
T'Fb:Bool I' F not e : Bool
I'Fe; : Bool I'F es : Bool I' e : Bool I'F e : Bool
' ey Aeg:Bool I' ey Ves:Bool
I'te; : Bool I'kFey:r I'kFeg:T

T'Fif ey then es else ez : T

I'kFe :m I'Fes:m
F " (61,62) : (Tl,TQ)




Fke:(r,m) F'ke:(r,m)
Lt fste):m Tk snde):

Fre{z:m}te:m I'kte:m — 7 T'key:m

'Fe=e:m > m I'kees:m



1. Given the following type derivation with type variables 7,..., 75, choose
the correct options:

(x,74) €T (x,74) €T
I'Fa:my I'bFax:my
T'F fst(z): 73 'k snd(z) : 75
'+ fst(z)(snd(z)) : 2
Ik x = fst(x)(snd(x)) : 7y

(a) There are no valid assignments to the type variables such that the
above derivation is valid.

b

(b) In all valid derivations, 7o = 75.
(¢) There are no valid derivations where 75 = Int.
(d)

[N

In all valid derivations, 74 = (73, 75).
(e) In all valid derivations, 71 = 74 — To.

(f) There is a valid derivation where 7 = 7.

2. For each of the following pairs of terms and types, provide a valid type
derivation or briefly argue why the typing is incorrect:

— Int

(f) © = y=if ythen (2 = y) else z: (Bool — Bool) — Bool — (Bool
— Bool)

(¢) x=y=1if ythen (z = y) else x: (Int — Bool) — Bool — (Int —
Bool)

3. Prove that there is no valid type derivation for the term

x = if fst(x) then snd(x) else x

Solution
1. The correct statements are d and e. For the remaining;:
e a: set 79 = Int, 75 = Bool, T3 = 75 — T2, T4 = (73,75), and 73 =
T4 — T2.
e b: see (a).
e c: see (a).
o f: given 7 = 79, we also know from the rule for lambda abstraction

that m = 74 — 7, and hence 75 = 74 — 75 recursively, which is a
contradiction.

10



2. For the given terms and types:

(a) = 2z +5: Int — Int: v/

z:Int €T
I'Fxz:Int I'E5:1Int
I'Fx+5:1Int

I"'t2=2x+5:Int — Int

(b) x = y=x+y: Int — Int — Int: v/

(¢c) =y = y(2) x z: Int — Int — Int: X. If y has type Int, then
y(2) cannot not well-typed, as the function application rule is not
applicable.

(d) = (z,z): Int — (Int, Int): v/

(e) x = y = if fst(zx) then snd(z) else y: (Bool, Int) — (Int, Int)
— Int: X. The type of the two branches of a conditional must match,
but here they are Int and (Int, Int) respectively.

(f) © = y=if ythen (2 = y) else z: (Bool — Bool) — Bool — (Bool

— Bool): v
(y,Bool) € T' @ {(z,Bool)}
(y,Bool) € T (z,Bool — Bool) € T I'® {(z,Bool)} I y : Bool
'y :Bool I'+ 2 : Bool — Bool I'+ 2=y :Bool — Bool

I'kif y then (z = y) else x : Bool — Bool
I"Fy=if ythen (z = y) else x : (Bool — Bool) — Bool — (Bool — Bool)

I'"bFa=y=if ythen (2 = y) else z : (Bool — Bool) — Bool — (Bool — Bool)
Note that the choice of type of z (and of the argument of ) is arbi-
trary. Hence, the next typing is also valid.
(g) x=y=1if ythen (z = y) else x: (Int — Bool) — Bool — (Int —
Bool): v/
3. Non-existence of a valid type derivation for the term:

t=x=1if fst(z) then snd(z) else x

Assume that there is a valid type derivation for the term. We will attempt
to derive a contradiction. We use the fact that if there exists a type
derivation, every step must use one of the rules above, and that the types
assigned to each variable must be consistent across the derivation.

First, ¢ has a type derivation if and only if t =
if fst(xz) then snd(x) else z has a type derivation, by using the
function abstraction rule. We will work with ¢; directly. The function
abstraction rule here does not give us more information.

Any type derivation for t; must end in the conditional rule. For this rule
to be applicable, we must have that the following are derivable:

(a) T F fst(x) : Bool
(b) T+ snd(x): T

11



(c) ThHa:7T

where the type variable 7 is also the type of ;.

By using the projection rule on (a) and (b), we learn that the type of z
must be (Bool, 1) and (72, 7) for two fresh variables 71 and 75 respectively.
Matching the two, as x may only have one type, we must have 7 = T,
Ty = Bool, and thus the type of z is (Bool, 7).

However, from (c), we learn that the type of x is 7. It must be the case
that 7 = (Bool,7). This is not possible for any type 7, and we have a
contradiction.

Hence, there is no valid type derivation for the term ¢.

12



