
CS 320
Computer Language Processing

Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are
equivalent by identifying them with inductive relations, and proving that the
inductive relations contain the same elements.

1. A1 : S ::= S + S | num
A2 : R ::= num R′ and R′ ::= +R R′ | ε

2. B1 : S ::= S(S)S | ε
B2 : R ::= RR | (R) | ε

Solution

1. A2 is the result of left-recursion elimination on A1. First, expressing them
as inductive relations, with rules named as on the right:

Snumnum ∈ S

w1 ∈ S w2 ∈ S
S+

w1 + w2 ∈ S

w ∈ S
Astart

1w ∈ A1

w ∈ R′
Rnumnum w ∈ R

w ∈ R w′ ∈ R′
R′

+
+w w′ ∈ R′ R′

εε ∈ R′

w ∈ R
Astart

2w ∈ A2

We must show that for any word w, w ∈ A1 if and only if w ∈ A2. For this,
it must be the case that there is a derivation tree for w ∈ A1 (equivalently,
w ∈ S) if and only if there is a derivation tree for w ∈ A2 (equivalently,
w ∈ R) according to the inference rules above.

(a) w ∈ S =⇒ w ∈ R: we induct on the depth of the derivation tree.
• Base case: derivation tree of depth 1. The tree must be

Snumnum ∈ S

1



We can show that there is a corresponding derivation tree for
w ∈ R:

R′
εε ∈ R′
Rnumnum ∈ R

• Inductive case: derivation tree of depth n + 1, given that for
every derivation of depth ≤ n of w′ ∈ S for any w′, there is a
corresponding derivation of w′ ∈ R. The last rule applied in the
derivation must be S+:

…
w1 ∈ S

…
w2 ∈ S

S+
w1 + w2 ∈ S

By the inductive hypothesis, since w1 ∈ S and w2 ∈ S have a
derivation tree of smaller depth, there are derivation trees for
w1 ∈ R and w2 ∈ R. In particular, the derivation for w1 ∈ R
must end with the rule Rnum (only case), so there must be a
derivation tree for num w′

1 ∈ R with w′
1 ∈ R′ and num w′

1 = w1.
We have the following pieces:

…
w′

1 ∈ R′
Rnum

num w′
1 ∈ R

…
w2 ∈ R

To show that w1 +w2 ∈ R, i.e. num w′
1 +w2 ∈ R, we must first

show that w′
1 + w2 ∈ R′, as required by the rule Rnum. Note

that words in R′ are of the form (+num)∗. We will prove this
separately for all pairs of words at the end (R′

Lemma). Knowing
this, however, we can construct the derivation tree for w1+w2 ∈
R:

…
w′

1 ∈ R′
…

w2 ∈ R
R′

Lemmaw′
1 + w2 ∈ R′

Rnum
num w′

1 + w2 ∈ R

num w′
1 + w2 = w1 + w2 = w, as required.

Finally, we will show the required lemma. We will prove
a stronger property R′

concat first, that for any pair of words
w1, w2 ∈ R′, w1 w2 ∈ R′ as well. We induct on the derivation of
w1 ∈ R′.
Base case: derivation ends with R′

ε. Then w1 = ε, and w1 w2 =
w2 ∈ R′ by assumption.
Inductive case: derivation ends with R′

+. Then w1 = +vv′ for
some v ∈ R and v′ ∈ R′:

…
v ∈ R

…
v′ ∈ R′

R′
+

+v v′ ∈ R′

Since v′ ∈ R′ has a smaller derivation tree than w1, by the
inductive hypothesis, we can prove that v′ w2 ∈ R′. We get:

…
v ∈ R

…
v′ ∈ R′

…
w2 ∈ R′

R′
concatv′ w2 ∈ R′

R′
+

+v v′ w2 ∈ R′

2



So, R′
concat is proven. We can show R′

lemma, i.e. w′
1 +w2 ∈ R′ if

w′
1 ∈ R′ and w2 ∈ R as:

…
w′

1 ∈ R′

…
w2 ∈ R

R′
εε ∈ R′

R′
+

+w2 ∈ R′
R′

concatw′
1 + w2 ∈ R′

Thus, the proof is complete.
(b) w ∈ R =⇒ w ∈ S: we induct on the depth of the derivation tree

for w ∈ R. This direction is simpler than the other, but the general
method is similar.

• Base case: derivation tree of depth 2 (minimum). The tree must
be

R′
εε ∈ R′
Rnumnum ∈ R

We have the corresponding derivation tree for w ∈ S:

Snumnum ∈ S

• Inductive case: derivation tree of depth n + 1, given that for
every derivation of depth ≤ n of w′ ∈ R for any w′, there is a
corresponding derivation of w′ ∈ S. The last rules applied must
be Rnum and R′

+ (otherwise the derivation would be of the base
case):

…
w1 ∈ R

…
w2 ∈ R′

R′
+

+w1 w2 ∈ R′
Rnumnum+ w1 w2 ∈ R

where w = num+w1 w2. However, we are somewhat stuck here,
as we have no way to relate R′ and S. We will separately show
that if +w′ ∈ R′, then there is a derivation of w′inS (lemma
R′

S). This will allow us to complete the proof:

Snumnum ∈ S

…
+w1 w2 ∈ R′

R′
Sw1 w2 ∈ S

S+
num+ w1 w2 ∈ S

The proof of the lemma R′
S is by induction again, and not shown

here. This completes the original proof.

2. Argument similar to Exercise Set 2 Problem 4 (same pair of grammars).
B1 ⊆ B2 as relations can be seen by producing a derivation tree for each
possible case in B1. For the other direction, B2 ⊆ B1, it is first convenient
to prove that B1 is closed under concatenation, i.e., if w1, w2 ∈ B1 then
there is a derivation tree for w1 w2 ∈ B1.

�

3



Exercise 2 Consider the following expression language over naturals, and a
halving operator:

expr ::= half(expr) | expr + expr | num

where num is any natural number constant ≥ 0.
We will design the operational semantics of this language. The semantics

should define rules that apply to as many expressions as possible, while being
subjected to the following safety conditions:

• the semantics should not permit halving unless the argument is even

• they should evaluate operands from left-to-right

Of the given rules below, choose a minimal set that satisfies the conditions
above. A set is not minimal if removing any rule does not change the set of
expressions that can be evaluated by the semantics, i.e. the domain of  , {x |
∃y. x y}, remains unchanged. The removed rule is said to be redundant.

e e′

half(e) e′
(A)

n is a value n = 2k
half(n) k

(B)

n is a value
half(n) bn

2 c
(C)

half(e) half(e′)

half(e) e′
(D)

e e′

half(e) half(e′)
(E)

e′  half(e)

half(e) e′
(F)

n1 is a value n2 is a value n1 + n2 = k n1 is odd
n1 + n2  k

(G)

e e′ n is a value
n+ e n+ e′

(H)

e2  e′2
e1 + e2  e1 + e′2

(I)

n1 is a value n2 is a value n1 + n2 = k n1, n2 are even
n1 + n2  k

(J)

n1 is a value n2 is a value n1 + n2 = k

n1 + n2  k
(K)

4



e1  e′1
e1 + e2  e′1 + e2

(L)

Solution A possible such minimal set of rules is {B,E,H,K,L}.
On what happens when the other rules are added to this set:

• A: incorrect; allows deducing half(half(10)) 5 with rule B.

• C: incorrect; allows deducing half(3) 1.

• D: incorrect; allows deducing half(half(10)) 5 with rules B and E.

• F: redundant; reverses a reduction.

• G: redundant; special case of rule K.

• I: incorrect; does not reduce the expression left-to-right.

• J: redundant; special case of rule K.

�

Exercise 3 Consider a simple programming language with integer arithmetic,
boolean expressions, and user-defined functions:

expr ::= true | false | num
expr == expr | expr + expr

expr && expr | if (expr) expr else expr

f(expr, . . . , expr) | x

where f represents a (user-defined) function, x represents a variable, and num
represents an integer.

1. Inductively define a substitution operation for the terms in this language,
which replaces every free occurrence of a variable x with a given expression
e.
The rule for substitution in an addition is provided as an example. Here,
t[x := e] represents the term t, with every free occurrence of x simultane-
ously replaced by e.

t1[x := e] → t′1 t2[x := e] → t′2
t1 + t2[x := e] → t′1 + t′2

2. Write the rules for the operational semantics for this language, assum-
ing call-by-name semantics for function calls. In call-by-name semantics,
function arguments are not evaluated before the call. Instead, the param-
eters are merely substituted into the function body. You may assume that
function parameters are named distinctly from variables in the program.

5



3. Under the following environment (with function names, parameters, and
bodies):

(sum, [x], if (x == 0) then 0 else x+ sum(x+ (−1)))

(rec, [ ], rec())

(default, [b, x], if b then x else 0)

evaluate each of the following expressions, showing the derivations:

(a) sum(2)

(b) if (1 == 2) then 3 else 4

(c) sum(sum(0))

(d) rec()

(e) default(false, rec())

How would the evaluations in each case change if we used call-by-value
semantics instead?

Solution

1. Substitution rules:

true[x := e] → true

false[x := e] → false

num[x := e] → num

t1[x := e] → t′1 t2[x := e] → t′2
t1 == t2[x := e] → t′1 == t′2

t1[x := e] → t′1 t2[x := e] → t′2
t1 + t2[x := e] → t′1 + t′2

t1[x := e] → t′1 t2[x := e] → t′2
t1 && t2[x := e] → t′1 && t′2

t1[x := e] → t′1 t2[x := e] → t′2 t3[x := e] → t′3
if (t1) t2 else t3[x := e] → if (t′1) t

′
2 else t′3

t1[x := e] → t′1 . . . tn[x := e] → t′3
f(t1, . . . , tn)[x := e] → f(t′1, . . . , t

′
n)

x[x := e] → e

x 6= y

y[x := e] → y

2. Operational semantics:

• Equality:

t1  t′1
t1 == t2  t′1 == t2

6



n1 is an integer value t2  t′2
n1 == t2  n1 == t′2

n1, n2 are integer values n1 = n2

n1 == n2  true
n1, n2 are integer values n1 6= n2

n1 == n2  false

• Addition:

t1  t′1
t1 + t2  t′1 + t2

n is an integer value t2  t′2
n+ t2  n+ t′2

n1, n2 are integer values n1 + n2 = k

n1 + n2  k

• Conjunction:

t1  t′1
t1 && t2  t′1 && t2

true && t t

false && t false

• Conditionals:

t1  t′1
if (t1) t2 else t3  if (t′1) t2 else t3

if (true) t2 else t3  t2

if (false) t2 else t3  t3

• Function call:

b0 is the body of f
(x1, . . . , xn) are parameters of f

b0[x1 := t1] → b1 . . . bn−1[xn := tn] → bn

f(t1, . . . , tn) bn

3. Evaluations:

(a) sum(2) 3:

sum(2)

 if (2 == 0) then 0 else 2 + sum(2 + (−1))

 if (false) then 0 else 2 + sum(2 + (−1))

 2 + sum(2 + (−1))

 2 + if ((2 + (−1)) == 0) then 0 else 2 + (−1) + sum(2 + (−1) + (−1))

 2 + if (1 == 0) then 0 else 2 + (−1) + sum(2 + (−1) + (−1))

7



 2 + if (false) then 0 else 2 + (−1) + sum(2 + (−1) + (−1))

 2 + (2 + (−1) + sum(2 + (−1) + (−1)))

. . .

 2 + (1 + 0)

 2 + 1

 3

(b) sum(sum(0)) 0:

sum(sum(0))

 if (sum(0) == 0) then 0 else 0 + sum(sum(0) + (−1))

 . . . (expand sum(0) in the conditional)
 if (0 == 0) then 0 else 0 + sum(sum(0) + (−1))

 if (true) then 0 else 0 + sum(sum(0) + (−1))

 0

(c) if (1 == 2) then 3 else 4 4.
(d) rec() rec() (infinite loop).
(e) default(false, rec()) 0.

Under call-by-value-semantics, the structure of the evaluations would be
different. In sum(sum(0)), we would evaluate the inner sum(0) to 0 before
evaluating the outer sum(·). In default(false, rec()), we would need to
evaluate rec(), which would lead to an infinite loop.

�

Exercise 4 Consider the following type system for a language with integers,
conditionals, pairs, and functions:

n is an integer literal
Γ ` n : Int

x : τ ∈ Γ
Γ ` x : τ

Γ ` e1 : Int Γ ` e2 : Int
Γ ` e1 + e2 : Int

Γ ` e1 : Int Γ ` e2 : Int
Γ ` e1 × e2 : Int

b is a boolean literal
Γ ` b : Bool

Γ ` e : Bool
Γ ` not e : Bool

Γ ` e1 : Bool Γ ` e2 : Bool
Γ ` e1 ∧ e2 : Bool

Γ ` e1 : Bool Γ ` e2 : Bool
Γ ` e1 ∨ e2 : Bool

Γ ` e1 : Bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : (τ1, τ2)

8



Γ ` e : (τ1, τ2)

Γ ` fst(e) : τ1

Γ ` e : (τ1, τ2)

Γ ` snd(e) : τ2

Γ⊕ {x : τ1} ` e : τ2
Γ ` x ⇒ e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1e2 : τ2

9



1. Given the following type derivation with type variables τ1, . . . , τ5, choose
the correct options:

(x, τ4) ∈ Γ

Γ ` x : τ4
Γ ` fst(x) : τ3

(x, τ4) ∈ Γ

Γ ` x : τ4
Γ ` snd(x) : τ5

Γ ` fst(x)(snd(x)) : τ2

Γ′ ` x ⇒ fst(x)(snd(x)) : τ1

(a) There are no valid assignments to the type variables such that the
above derivation is valid.

(b) In all valid derivations, τ2 = τ5.
(c) There are no valid derivations where τ2 = Int.
(d) In all valid derivations, τ4 = (τ3, τ5).
(e) In all valid derivations, τ1 = τ4 → τ2.
(f) There is a valid derivation where τ1 = τ2.

2. For each of the following pairs of terms and types, provide a valid type
derivation or briefly argue why the typing is incorrect:

(a) x ⇒ x+ 5: Int → Int

(b) x ⇒ y ⇒ x+ y: Int → Int → Int

(c) x ⇒ y ⇒ y(2)× x: Int → Int → Int

(d) x ⇒ (x, x): Int → (Int, Int)

(e) x ⇒ y ⇒ if fst(x) then snd(x) else y: (Bool, Int) → (Int, Int)
→ Int

(f) x ⇒ y ⇒ if y then (z ⇒ y) else x: (Bool → Bool) → Bool → (Bool
→ Bool)

(g) x ⇒ y ⇒ if y then (z ⇒ y) else x: (Int → Bool) → Bool → (Int →
Bool)

3. Prove that there is no valid type derivation for the term

x ⇒ if fst(x) then snd(x) else x

Solution

1. The correct statements are d and e. For the remaining:

• a: set τ2 = Int, τ5 = Bool, τ3 = τ5 → τ2, τ4 = (τ3, τ5), and τ1 =
τ4 → τ2.

• b: see (a).
• c: see (a).
• f: given τ1 = τ2, we also know from the rule for lambda abstraction

that τ1 = τ4 → τ2, and hence τ2 = τ4 → τ2 recursively, which is a
contradiction.

10



2. For the given terms and types:

(a) x ⇒ x+ 5: Int → Int: 3

x : Int ∈ Γ
Γ ` x : Int Γ ` 5 : Int

Γ ` x+ 5 : Int
Γ′ ` x ⇒ x+ 5 : Int → Int

(b) x ⇒ y ⇒ x+ y: Int → Int → Int: 3

(c) x ⇒ y ⇒ y(2) × x: Int → Int → Int: 7. If y has type Int, then
y(2) cannot not well-typed, as the function application rule is not
applicable.

(d) x ⇒ (x, x): Int → (Int, Int): 3

(e) x ⇒ y ⇒ if fst(x) then snd(x) else y: (Bool, Int) → (Int, Int)
→ Int: 7. The type of the two branches of a conditional must match,
but here they are Int and (Int, Int) respectively.

(f) x ⇒ y ⇒ if y then (z ⇒ y) else x: (Bool → Bool) → Bool → (Bool
→ Bool): 3

(y, Bool) ∈ Γ

Γ ` y : Bool

(x, Bool → Bool) ∈ Γ

Γ ` x : Bool → Bool

(y, Bool) ∈ Γ⊕ {(z, Bool)}
Γ⊕ {(z, Bool)} ` y : Bool

Γ ` z ⇒ y : Bool → Bool

Γ ` if y then (z ⇒ y) else x : Bool → Bool

Γ′ ` y ⇒ if y then (z ⇒ y) else x : (Bool → Bool) → Bool → (Bool → Bool)

Γ′′ ` x ⇒ y ⇒ if y then (z ⇒ y) else x : (Bool → Bool) → Bool → (Bool → Bool)

Note that the choice of type of z (and of the argument of x) is arbi-
trary. Hence, the next typing is also valid.

(g) x ⇒ y ⇒ if y then (z ⇒ y) else x: (Int → Bool) → Bool → (Int →
Bool): 3

3. Non-existence of a valid type derivation for the term:

t = x ⇒ if fst(x) then snd(x) else x

Assume that there is a valid type derivation for the term. We will attempt
to derive a contradiction. We use the fact that if there exists a type
derivation, every step must use one of the rules above, and that the types
assigned to each variable must be consistent across the derivation.
First, t has a type derivation if and only if t1 =
if fst(x) then snd(x) else x has a type derivation, by using the
function abstraction rule. We will work with t1 directly. The function
abstraction rule here does not give us more information.
Any type derivation for t1 must end in the conditional rule. For this rule
to be applicable, we must have that the following are derivable:

(a) Γ ` fst(x) : Bool

(b) Γ ` snd(x) : τ

11



(c) Γ ` x : τ

where the type variable τ is also the type of t1.
By using the projection rule on (a) and (b), we learn that the type of x
must be (Bool, τ1) and (τ2, τ) for two fresh variables τ1 and τ2 respectively.
Matching the two, as x may only have one type, we must have τ1 = τ ,
τ2 = Bool, and thus the type of x is (Bool, τ).
However, from (c), we learn that the type of x is τ . It must be the case
that τ = (Bool, τ). This is not possible for any type τ , and we have a
contradiction.
Hence, there is no valid type derivation for the term t.

�

12


