
CS 320
Computer Language Processing

Review Exercises

April 02, 2025

Note: these questions are collected from previous exams, which are also
available to you in full. Some solutions were not available in the previous exams,
and were added later. The solutions have not been rigorously verified. Use them
as a quick reference, but do not assume they are always the correct expected
answer.

2016 Exercise 1 Let Σ = {a, b} for distinct a, b. Let L1, L2, L range over subsets
of Σ∗ (languages). Remember that for languages, concatenation is given by:

L1L2 = {u1u2 | u1 ∈ L1 ∧ u2 ∈ L2}

We that a language L left-cancels if and only if for every L1, L2:

LL1 = LL2 =⇒ L1 = L2

1. Does L = ∅ left-cancel? No

2. Does L = ε left-cancel? Yes

3. Give a regular expression describing an infinite language L that left-
cancels. a∗b

4. Give a context-free grammar for another language L that left-cancels, but
is not regular. S ::= aRb;R ::= aRb | ε

2016 Exercise 2 Consider the grammar:

decl ::= varDecl | funDecl

varDecl ::= type ID;

funDecl ::= type ID (optIDs);

optIDs ::= ε | IDs

IDs ::= ID | IDs ID

type ::= int | type*

Note that type* is type followed by the terminal *, not a Kleene star.

1. Compute nullable and first for each non-terminal of the grammar above.
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Solution Only optIDs is nullable. The first sets are:

first(decl) = {int}
first(varDecl) = {int}
first(funDecl) = {int}
first(optIDs) = {ID}
first(IDs) = {ID}
first(type) = {int}

�

2. Explain why the grammar is not LL(1).

Solution decl, IDs, and type each have two rules with the same first
set. �

3. Give an LL(1) grammar describing the same sequences of tokens as the
previous grammar.

Solution We can remove the common prefix from decl:

decl = type ID decl′

decl′ = ; | ( optIDs );

We can remove the left recursion from the IDs rule:

IDs = ID IDs′

IDs′ = ε | ID IDs′

We can also remove the left recursion from the type rule:

type = int type′

type′ = ε | * type′

Note that IDs can be followed only by a closing parenthesis. �

2022 Exercise 3 Consider the following grammar with non-terminals S and A and
terminals EOF, (, ), [, and ]:

S ::= A EOF

A ::= (A) A | A [A] | ε

1. Choose all true statements about the grammar above:

(a) “[]()([)]” is accepted by the grammar.
(b) The grammar is LL(1).
(c) The grammar is ambiguous. X
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(d) nullable(A) = true. X

(e) nullable(S) = true.

2. Choose the correct option:

(a) first(S) = {EOF}
(b) first(S) = {(, [}
(c) first(S) = {(, ),EOF}
(d) first(S) = {(, [,EOF} X

(e) first(S) = {(, ), [, ],EOF}

3. Choose the correct option:

(a) follow(A) = {), ]}
(b) follow(A) = {), ],EOF}
(c) follow(A) = {(, [, ), ]}
(d) follow(A) = {(, [, ],EOF}
(e) follow(A) = {(, [, ), ],EOF}

None of the above are correct; follow(A) = {), [, ],EOF}

2022 Exercise 4 Complete (on the next page) the type derivation for the body of
the function f.

def f(x: Int, u: Int, v: Int): Int = {
if (x < u) {
u

}
else if (v < x) {
v

}
else {
x

}
}

You may use the following type rules:

(x, T ) ∈ Γ

Γ ` x : T

Γ ` e1 : Int Γ ` e2 : Int

Γ ` e1 + e2 : Int

Γ ` e1 : Int Γ ` e2 : Int

Γ ` e1 ∗ e2 : Int

Γ ` e1 : Bool Γ ` e2 : Bool

Γ ` e1&&e2 : Bool

Γ ` e1 : Bool Γ ` e2 : Bool

Γ ` e1||e2 : Bool

Γ ` e1 : Int Γ ` e2 : Int

Γ ` e1 < e2 : Bool

Γ ` e1 : Bool Γ ` e2 : T Γ ` e3 : T

Γ ` if e1 then e2 else e3 : T
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2022, contd Exercise 5 For which of the following expressions does type unification suc-
ceed? For the + operator, assume the type rules as in the previous question.

1. x ⇒ y ⇒ y(z ⇒ 6) + y(7)

2. g ⇒ f ⇒ x ⇒ g(f(x))

3. x ⇒ y ⇒ ((z ⇒ y), y)

4. g ⇒ f ⇒ x ⇒ g(f(x)) + f(g(x)) + x

2022, contd Exercise 6 Consider a programming language with pairs and the usual typ-
ing rules, as in the lecture. Apply the unification algorithm on the following
function:

def swap(t) = {
(t._2, t._1)

}

assuming the following type variables assigned to tree nodes:

((t : τ).2 : τ1, (t : τ).1 : τ2) : τ3

Write each step of the unification algorithm, mentioning what rules of the algo-
rithm you are applying. We provide you with the initial step:

τ = (τ10, τ1)

τ = (τ2, τ20)

τ3 = (τ1, τ2)

Solution

1. Substituting τ = (τ10, τ1):

(τ10, τ1) = (τ2, τ20)

τ3 = (τ1, τ2)

2. Unifying the pair expression:

τ10 = τ2

τ1 = τ20

τ3 = (τ1, τ2)

3. Substituting τ1 and τ2 per equations:

τ3 = (τ1, τ2)

We can get the values of τ and τ3 in terms of τ1 and τ2 by looking at
intermediate steps we took during unification. �

Write down an expression for the argument and return types of swap in terms
of the type variables τ1 and τ2.

Solution Argument type: τ = (τ2, τ1)

Return type: τ3 = (τ1, τ2) �
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