CS 320
Computer Language Processing
Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are
equivalent by identifying them with inductive relations, and proving that the
inductive relations contain the same elements.

1. A;:S:=5+ 5| num
As:Ru:=num R and R :=+R R’ | ¢

2. By : S u=S(5)S | €
BQIR _RR|()‘6

Exercise 2 Consider the following expression language over naturals, and a
halving operator:

expr ::= half(expr) | expr + expr | num

where num is any natural number constant > 0.

We will design the operational semantics of this language. The semantics
should define rules that apply to as many expressions as possible, while being
subjected to the following safety conditions:

e the semantics should not permit halving unless the argument is even
e they should evaluate operands from left-to-right

Of the given rules below, choose a minimal set that satisfies the conditions
above. A set is mot minimal if removing any rule does not change the set of
expressions that can be evaluated by the semantics, i.e. the domain of ~, {x |
Jy. ~ y}, remains unchanged. The removed rule is said to be redundant.

e~ e
half(e) ~ €’ (4)
n is a value n =2k
half(n) ~ k (B)
n is a value ()

half(n) ~ | 2]

half(e) ~ half(e’)
half(e) ~» ¢’

half(ej :: flalf(e/) (E)

e’ ~ half(e)

_— (F)
half(e) ~ e

ny is a value ny is a value ny+ne =k ny is odd @)
ny+ng ~ k

e~ e n is a value (H)

n+e~sn-+e

eg ~> €h

/
e] +eg~ et ey

ny is a value no is a value ni+ng =k n1, Ny are even
ny + no ~» k

ny is a value ny is a value ny+ng =k
niy+ng ~ k

e1 ~ e}

€1+ e ~ e} + eg

Exercise 3 Consider a simple programming language with integer arithmetic,
boolean expressions, and user-defined functions:

expr = true | false | num
expr == expr | expr + expr
expr && expr | if (expr) expr else expr
flexpr,... expr) |z
where f represents a (user-defined) function, x represents a variable, and num

represents an integer.

1. Inductively define a substitution operation for the terms in this language,
which replaces every free occurrence of a variable x with a given expression
e.

The rule for substitution in an addition is provided as an example. Here,
t[z := e] represents the term ¢, with every free occurrence of x simultane-
ously replaced by e.

tifz:=e] =] tolz :=e] — t}
t1 +tafr =€) = t] +th

2. Write the rules for the operational semantics for this language, assum-
ing call-by-name semantics for function calls. In call-by-name semantics,

function arguments are not evaluated before the call. Instead, the param-
eters are merely substituted into the function body. You may assume that
function parameters are named distinctly from variables in the program.

3. Under the following environment (with function names, parameters, and
bodies):

(sum, [z],if (x ==0) then 0 else x + sum(xz + (—1)))

(rec, [], rec())
(default, [b,x],if b then x else 0)

evaluate each of the following expressions, showing the derivations:

S
~
—
—
Il
|
=
~
=
Q
S
w
o
=~
»
@
W~

)
)
(¢) sum(sum(0))
)
)

How would the evaluations in each case change if we used call-by-value
semantics instead?

Exercise 4 Consider the following type system for a language with integers,
conditionals, pairs, and functions:

n is an integer literal z:7el

I'n:iInt Nxz:7
I'Fe;:Int I'Fes:Int
I'Fe; +es:Int
I'keq:Int I'ey:Int
I'Fel xey:Int
b is a boolean literal I' e :Bool
I'Fb:Bool I' F not e :Bool
I'F e : Bool I'F es : Bool I' e : Bool I'F e : Bool
I' ey Aeg:Bool I'F ey Ves:Bool

I' e : Bool I'kFey:T I'keg:r
I'Fif e; then ey else ez : T
Fl—elle F|_€23T2

'k (61,62) : (Tl,TQ)
Pke:(m,7m) F'ke:(r,7)
Ik fstle):n TEsnd(e):m

Fre{z:mn}rle:n I'kFei:m =1 T'kFey:m
l'Fe=e:m —m I'-eex:m

1. Given the following type derivation with type variables 7,..., 75, choose
the correct options:

(x,74) €T (x,74) €T
I'Fa:my I'bFax:my
Ik fst(x): 3 'k snd(z) : 75
'+ fst(z)(snd(z)) : 2
Ik x = fst(x)(snd(x)) : 7y

(a) There are no valid assignments to the type variables such that the

above derivation is valid.
(b) In all valid derivations, 7o = 75.
(c
(

)
) There are no valid derivations where 75 = Int.
)

[N

In all valid derivations, 74 = (73, 75).
(e) In all valid derivations, 71 = 74 — To.

(f) There is a valid derivation where 7 = 7.

2. For each of the following pairs of terms and types, provide a valid type
derivation or briefly argue why the typing is incorrect:

— Int

(f) © = y=if ythen (2 = y) else z: (Bool — Bool) — Bool — (Bool
— Bool)

(¢) x=y=1if ythen (z = y) else x: (Int — Bool) — Bool — (Int —
Bool)

3. Prove that there is no valid type derivation for the term

x = if fst(x) then snd(x) else x

