Computer Language Processing

Lab 4

Alexandre Pinazza
Fall 2021

Labs overview

Lab01 — Interpreter

e Lab02 — Lexer

Lab03 — Parser

Lab04 — Type Checker

Lab05 — Codegen (Code Generator)

Lab06 — Compiler extension

Pipeline

input ——»

Front end

il

Back ends
Interpreter

Code Gen.

——» «result»

— web assembly

Prelude: Name Analyser

e Transforms a Nominal Tree into a Symbolic Tree

e Checks that all variables, functions and data types respects
Amy naming rules

e Populates the symbol table (a dictionary of symbols for the
program)

e It is provided to you (but we strongly suggest to read and
understand it :-))

Type Checker

e Catches (some) errors in the program at compile time
For example, it does not catches division by zero errors

e Last stage of the compiler frontend

e Does not modify the program so their is no expected outputs
for the tests

Implementation

Travers a program and generate all the typing constraints

def genConstraints(e: Expr, expected: Type)
(implicit env: Map[Identifier, Typel): List[Constraint]

Unifies the constraints until none is left

def solveConstraints(constraints: List[Constraint]): Unit

Wrong example

e Input :
object Bogus
"Amy <3" || 5
end Bogus
e Constraints
TypeVar (0) == BooleanType // Top level type
BooleanType == StringType // LHS of Or
BooleanType == IntType // RHS of Or
e Error:
The last two constraints can't be unified so the type checkers

reporsts them both and crashed

Correct example

e Input :
object Correct
3+ 4 ==
end Correct
e Constraints

TypeVar(0) == BooleanType // result of equaltity

TypeVar (1) == IntType // LHS of equality

TypeVar (1) == IntType // RHS of equality

IntType == IntType // LHS of addition

IntType == IntType // RHS of addition
e Unification succeeded

TypeVar(0) := BooleantType

TypeVar (1) := IntType

Some advice

Don't terminate compilation directly when an error is found

Read the handout carefully

Write as many tests as possible

You have one week for this lab

Finally

Good Luck !

10

