CS 320
Computer Language Processing
Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are
equivalent by identifying them with inductive relations, and proving that the
inductive relations contain the same elements.

1. A;:S:=5+ 5| num
As:Ru:=num R and R :=+R R’ | ¢

2. By : S u=S(5)S | €
BQIR _RR|( )6

Exercise 2 Consider the following expression language over naturals, and a
halving operator:

expr ::= half(expr) | expr + expr | num

where num is any natural number constant > 0.

We will design the operational semantics of this language. The semantics
should define rules that apply to as many expressions as possible, while being
subjected to the following safety conditions:

e the semantics should not permit halving unless the argument is even
e they should evaluate operands from left-to-right

Of the given rules below, choose a minimal set that satisfies the conditions
above. A set is mot minimal if removing any rule does not change the set of
expressions that can be evaluated by the semantics, i.e. the domain of ~, {x |
Jy.  ~ y}, remains unchanged. The removed rule is said to be redundant.

e~ e
half(e) ~ €’ (4)
n is a value n =2k
half(n) ~ k (B)
n is a value ()

half(n) ~ | 2]



half(e) ~ half(e’)
half(e) ~» ¢’

e~ e

half(e) ~ half(e’)

e’ ~ half(e)
half(e) ~ ¢

ny is a value ny is a value ny+ne =k ny is odd
ny+ng ~ k

e~ e n is a value
n+e~sn-+e

eg ~> €h

/
e] +eg~ et ey

ny is a value no is a value ni+ng =k n1, Ny are even

n1+n2~—>k

ny is a value ny is a value ny+ng =k
niy+ng ~ k

e1 ~ e}

€1+ e ~ e} + eg

Exercise 3 Consider a simple programming language with integer arithmetic,

boolean expressions, and user-defined functions:

expr = true | false | num
expr == expr | expr + expr
expr && expr | if (expr) expr else expr
flexpr,... expr) |

where f represents a (user-defined) function, x represents a variable, and num

represents an integer.

1. Inductively define a substitution operation for the terms in this language,
which replaces every free occurrence of a variable x with a given expression

€.

The rule for substitution in an addition is provided as an example. Here,
t[z := e] represents the term ¢, with every free occurrence of x simultane-

ously replaced by e.

tifz:=e] =t} tolz :=e] — t}
ty +tofx =€) = t) +t§




2. Write the rules for the operational semantics for this language, assuming
call-by-name semantics for function calls. In call-by-name semantics, func-
tion arguments are not evaluated before the call. Instead, the parameters
are merely substituted into the function body.

3. Under the following environment (with function names, parameters, and
bodies):

(sum, [z],if (x == 0) then 0 else x + sum(xz + (—1)))

(rec,[],rec())
(default,[b,xz],if b then x else 0)

evaluate each of the following expressions, showing the derivations:

S
~
—~
—
Il
|
=
~
=
Q
S
w
o
=~
»
m
IS

)
)
c) sum(sum(0))
)
)

How would the evaluations in each case change if we used call-by-value
semantics instead?

Exercise 4 Consider the following type system for a language with integers,
conditionals, pairs, and functions:

n is an integer literal z:7el

I'n:Int FCxz:7
I'keq:iInt I'keg:Int
I'Fel +e:Int
I'He;:Int I'esy: Int
I'key Xey:Int
b is a boolean literal I'e:Bool
T'Fb:Bool I' F not e : Bool
I'F e : Bool I'F e : Bool I' e : Bool I'F es : Bool
' ey Aey:Bool I'e; Ves:Bool

I'te; : Bool T'key:r I'keg:T
T'Fif el then es else ez : T
FF612T1 FFGQITQ

Tk (e1,e2): (11,72)
Tke:(n,m) F'ke:(mr,m)
Tk fstle):m Tk snd(e):m

Fre{z:m}rle:m T'ke:m — 7 T'key:m
F'Fez=e:m —=n I'Fejex:m




1. Given the following type derivation with type variables 7,..., 75, choose
the correct options:

(x,74) €T (x,74) €T
I'Fa:my I'bFax:my
Ik fst(x): 3 'k snd(z) : 75
'+ fst(z)(snd(z)) : 2
Ik x = fst(x)(snd(x)) : 7y

(a) There are no valid assignments to the type variables such that the

above derivation is valid.
(b) In all valid derivations, 7o = 75.
(c
(

)
) There are no valid derivations where 75 = Int.
)

[N

In all valid derivations, 74 = (73, 75)
(e) In all valid derivations, 7o = 74 — 71

(f) There is a valid derivation where 7 = 7.

2. For each of the following pairs of terms and types, provide a valid type
derivation or briefly argue why the typing is incorrect:

— Int

(f) © = y=if ythen (2 = y) else z: (Bool — Bool) — Bool — (Bool
— Bool)

(¢) x=y=1if ythen (z = y) else x: (Int — Bool) — Bool — (Int —
Bool)

3. Prove that there is no valid type derivation for the term

x = if fst(x) then snd(x) else x



