CS 320
Computer Language Processing
Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are
equivalent by identifying them with inductive relations, and proving that the
inductive relations contain the same elements.

1. A;:S:=5+ 5| num
Ay:Ru:=num R and R :=+R R’ | ¢
2. By:S5:=8(5)S | €
Bs:R:= RR | (R)e
Solution
1. As is the result of left-recursion elimination on A;. First, expressing them

as inductive relations, with rules named as on the right:

wy €8 we €8
Snum

_— S
num € S w1+ we € S +

w € S Astart
w e Ay 1

weE R
num w € R

wE R w' € R ’

R — R
4w w' € R + ec R €

Rnum

weR Astm‘t
2
w E Ay

We must show that for any word w, w € A; if and only if w € A,. For this,
it must be the case that there is a derivation tree for w € A; (equivalently,
w € S) if and only if there is a derivation tree for w € Ay (equivalently,
w € R) according to the inference rules above.

(a) we S = w € R: we induct on the depth of the derivation tree.

e Base case: derivation tree of depth 1. The tree must be

— S
num e § ™



We can show that there is a corresponding derivation tree for
w € R:

R
eE€R ;%
nume R "
Inductive case: derivation tree of depth n + 1, given that for
every derivation of depth < n of w’ € S for any w’, there is a
corresponding derivation of w’ € R. The last rule applied in the
derivation must be S :

w; €8 wy € S
w; +wy €8

Sy

By the inductive hypothesis, since w; € S and w; € S have a
derivation tree of smaller depth, there are derivation trees for
w; € R and wy € R. In particular, the derivation for w; € R
must end with the rule Ry, (only case), so there must be a
derivation tree for num w| € R with w| € R’ and num w} = wy.
We have the following pieces:
w/ 6 R/ cen

nuni wy € R Boum w2 € R

To show that w; +wy € R, i.e. num w| +wy € R, we must first
show that w] + we € R', as required by the rule R,.,,. Note
that words in R’ are of the form (+num)*. We will prove this
separately for all pairs of words at the end (R ). Knowing

Lemma
this, however, we can construct the derivation tree for wy +wg €

R:

w) € R wy € R
w’1+w2€R’

num wj +wy € R

/
Lemma

Rnum

num w'l + wy = w1 + wy = w, as required.

Finally, we will show the required lemma. We will prove
a stronger property R, ... first, that for any pair of words
wi,we € R, w; wa € R’ as well. We induct on the derivation of
w; € R.

Base case: derivation ends with R.. Then wy =€, and wy wy =
we € R’ by assumption.

Inductive case: derivation ends with R/,. Then w; = +vv’ for
some v € R and v’ € R":

vER v €R R
+v v e R +
Since v/ € R’ has a smaller derivation tree than w;, by the
inductive hypothesis, we can prove that v wg € R’. We get:

) v €R we € R,
v E R ’U/ wo c R/ R/ concat
+v v wy € R +




So, R, pcqs is proven. We can show Rj, . ie w]+ws € R if
wj € R and we € R as:

/
wy € R ec R ¢

wy € R +wpy € R, +
wll +wy € R/ concat

Thus, the proof is complete.

(b) w e R = w € S: we induct on the depth of the derivation tree
for w € R. This direction is simpler than the other, but the general
method is similar.

« Base case: derivation tree of depth 2 (minimum). The tree must
be
I -
ceER jt{
nume R "M

We have the corresponding derivation tree for w € S:

num € S Snum
o Inductive case: derivation tree of depth n + 1, given that for
every derivation of depth < n of w’ € R for any w’, there is a
corresponding derivation of w’ € S. The last rules applied must
be Ryum and R/, (otherwise the derivation would be of the base
case):

w1 S R W2 € R/ R/
+w; we € R’ R +
num + w; wy € R~

where w = num+w; we. However, we are somewhat stuck here,
as we have no way to relate R’ and S. We will separately show
that if +w’ € R, then there is a derivation of w'inS (lemma
RY). This will allow us to complete the proof:

+w; we € R’
num € S wy we € S g
num + w; wy € S +

num

The proof of the lemma R is by induction again, and not shown
here. This completes the original proof.

2. Argument similar to Exercise Set 2 Problem 4 (same pair of grammars).
B, C B, as relations can be seen by producing a derivation tree for each
possible case in By. For the other direction, By C By, it is first convenient
to prove that Bj is closed under concatenation, i.e., if wi,wy € By then
there is a derivation tree for wy ws € Bj.

O



Exercise 2 Consider the following expression language over naturals, and a
halving operator:

expr ::= half(expr) | expr + expr | num

where num is any natural number constant > 0.

We will design the operational semantics of this language. The semantics
should define rules that apply to as many expressions as possible, while being
subjected to the following safety conditions:

e the semantics should not permit halving unless the argument is even
e they should evaluate operands from left-to-right

Of the given rules below, choose a minimal set that satisfies the conditions
above. A set is not minimal if removing any rule does not change the set of
expressions that can be evaluated by the semantics, i.e. the domain of ~~, {x |
Jy.  ~ y}, remains unchanged. The removed rule is said to be redundant.

e~ e
half(e) ~» ¢’ )
n is a value n =2k
half(n) ~ k (B)
n is a value ()

half(n) ~ | 5]

half(e) ~ half(e’)
half(e) ~ €’

half(ej : Ealf(e’) (E)

e’ ~ half(e)
half(e) ~ ¢

ny is a value ny is a value ny+ng =k ny is odd @)
ny +ng ~ k

e~ e n is a value (H)
n+e~n-+e

eg ~ €

/
e1 t+ ez~ e+ ey

ny is a value ny is a value ny+ng =k ni,MNo are even )
ny+ng ~k

ny is a value no is a value ny+ng =k
ny +ng ~ k




e ~ e

/
€1 +eg v ep+ e

Solution A possible such minimal set of rules is {B, F, H, K, L}.
On what happens when the other rules are added to this set:

A: incorrect; allows deducing half(half(10)) ~» 5 with rule B.

C: incorrect; allows deducing half(3) ~- 1.

D: incorrect; allows deducing half (half(10)) ~» 5 with rules B and E.
F: redundant; reverses a reduction.

G: redundant; special case of rule K.

I: incorrect; does not reduce the expression left-to-right.

J: redundant; special case of rule K.

O

Exercise 3 Consider a simple programming language with integer arithmetic,
boolean expressions, and user-defined functions:

expr = true | false | num
expr == expr | expr + expr
expr && expr | if (expr) expr else expr
f(expr,... expr) |z

where f represents a (user-defined) function, x represents a variable, and num
represents an integer.

1.

Inductively define a substitution operation for the terms in this language,
which replaces every free occurrence of a variable x with a given expression
e.

The rule for substitution in an addition is provided as an example. Here,
t[z := e] represents the term ¢, with every free occurrence of  simultane-
ously replaced by e.

tifz:=e] = ] tolz :=e] — t}
t1 +tafr =€) = t] +th

Write the rules for the operational semantics for this language, assuming
call-by-name semantics for function calls. In call-by-name semantics, func-
tion arguments are not evaluated before the call. Instead, the parameters
are merely substituted into the function body.



3. Under the following environment (with function names, parameters, and
bodies):

(sum, [z],if (x == 0) then 0 else x + sum(x + (—1)))

(rec,[ ], rec())
(default,[b,xz],if b then x else 0)

evaluate each of the following expressions, showing the derivations:

S
~
—~
—
Il
I
N
-
~
=
Q
S
w
o
=~
%
@
W~

How would the evaluations in each case change if we used call-by-value
semantics instead?

Solution

1. Substitution rules:

truelx := e] — true

falselx :=e] — false

num|z := ¢/ - num

tilx :=¢] = t] tolx :=¢] =t}
t] == tz[l’ = 6} — tll == tl2
tifx :=¢] = t] tolx :=¢] =t}
tl +t2[1’ = 6} — tll +tl2
tifx:=¢] =t} to[z :=¢e] — t}
tq && tQ[I = 6} — tll && t/2
tilx :=¢] = t] tolx :=e¢] =t} ts[z:=e] — t}
if (t1) t2 else ts[z :=e] — if (t}) th else t4
tifx:=e] = ] to[z =€ =t

fltr, ..tz =€) = f(t],...,t))

x[r:=e€] e

ylz =€ >y

2. Operational semantics:

o Equality:
n1,Ne are integer values ny = no
ny == ng ~ true
n1, N9 are integer values ny # ng
ny == ngy ~ false



o Addition:
ty ~ t]
t] +ty ~ ]+t
n is an integer value to ~~ th
n+ty ~n+th
n1,Ne are integer values ny+ne ==k

ny+ng ~ k
o Conjunction:

t; ~ 1)
t1 && to ~ t) && to
true && t ot
false && t ~~ false

« Conditionals:

tl ~ tll
if (t1) to else tg ~ if (t}) t2 else t3

if (true) to else tg ~ to

if (false) ty else tz ~ tg

o Function call:
b is the body of f
(z1,...,2,) are parameters of f
bo[l‘l = tl] — b ... bn—l[l‘n = tn] — by,
f(th cee 7tn) ~ bn

. Evaluations:
(a) sum(2) ~ 3:

sum(2)

~if (2==0) then 0 else 2 + sum(2 + (—1))

~ if (false) then 0 else 2 + sum(2 + (—1))

~ 24+ sum(2 + (—1))

~241if (24 (=1)) == 0) then 0 else 1 + sum(2 + (—1))
~ 24 1if (1 ==0) then 0 else 1 + sum(2 + (—1))

~ 2+1if (false) then 0 else 1 + sum(2 + (—1) + (—1))

s 24 (14 sum(2+ (=1) + (=1)))

~ 24 (140)
~ 241

~ 3



(b) sum(sum(0)) ~ 0:

sum(sum(0))

~ if (sum(0) == 0) then 0 else 0 4+ sum(sum(0) 4+ (1))
~ ... (expand sum(0) in the conditional)

~ if (0 ==0) then 0 else 0+ sum(sum(0) + (—1))

~ if (true) then 0 else 0 4+ sum(sum(0) + (—1))

~ 0

(c) if (1 ==2) then 3 else 4 ~ 4.

(d) rec() ~ rec() (infinite loop).

(e) default(false,rec()) ~ 0.
Under call-by-value-semantics, the structure of the evaluations would be
different. In sum(sum(0)), we would evaluate the inner sum(0) to 0 before

evaluating the outer sum(-). In default(false,rec()), we would need to
evaluate rec(), which would lead to an infinite loop.

O

Exercise 4 Consider the following type system for a language with integers,
conditionals, pairs, and functions:

n is an integer literal z:7el

I'n:Int Ncz:7
I'ey:Int I'ey:Int
I'Fe; +e:Int
I'keq:Int I'keg:Int
I'Fep xXeq:Int
b is a boolean literal ' e: Bool
I'Fb:Bool I' F not e : Bool
I'F e : Bool I'F e : Bool I' e : Bool I'F e : Bool
' ey Aeg:Bool I' ey Ves:Bool

I' e : Bool I'kFes:T I'kFes:T
T'Fif e; then es else ez : T
F|_€127'1 F|_€2:T2

'k (61,62) : (Tl,TQ)
I'ke:(m,m) F'ke:(m,m)
Ik fstle):m TEsnd(e):

Fre{z:mlre:n I'kFe:m—m T'key:m
lFr=e:m —m I'kFeex:m




1. Given the following type derivation with type variables 7,..., 75, choose
the correct options:

(x,74) €T (x,74) €T
I'Fa:my I'bFax:my
T'F fst(z): 73 'k snd(z) : 75
'+ fst(z)(snd(z)) : 2
Ik x = fst(x)(snd(x)) : 7y

(a) There are no valid assignments to the type variables such that the
above derivation is valid.

b

(b) In all valid derivations, 7o = 75.
(¢) There are no valid derivations where 75 = Int.
(d)

[N

In all valid derivations, 74 = (73, 75)
(e) In all valid derivations, 7o = 74 — 71

(f) There is a valid derivation where 7 = 7.

2. For each of the following pairs of terms and types, provide a valid type
derivation or briefly argue why the typing is incorrect:

— Int

(f) © = y=if ythen (2 = y) else z: (Bool — Bool) — Bool — (Bool
— Bool)

(¢) x=y=1if ythen (z = y) else x: (Int — Bool) — Bool — (Int —
Bool)

3. Prove that there is no valid type derivation for the term

x = if fst(x) then snd(x) else x

Solution
1. The correct statements are d and e. For the remaining;:
e a: set 79 = Int, 75 = Bool, T3 = 75 — T2, T4 = (73,75), and 73 =
T4 — T2.
e b: see (a).
e c: see (a).
o f: given 7 = 79, we also know from the rule for lambda abstraction

that m = 74 — 7, and hence 75 = 74 — 75 recursively, which is a
contradiction.



2. For the given terms and types:

(a) = 2z +5: Int — Int: v/

z:Int €T
I'Fxz:Int I'E5:1Int
I'Fx+5:1Int

I"'t2=2x+5:Int — Int

(b) x = y=x+y: Int — Int — Int: v/

(¢c) =y = y(2) x z: Int — Int — Int: X. If y has type Int, then
y(2) cannot not well-typed, as the function application rule is not
applicable.

(d) = (z,z): Int — (Int, Int): v/

(e) x = y = if fst(zx) then snd(z) else y: (Bool, Int) — (Int, Int)
— Int: X. The type of the two branches of a conditional must match,
but here they are Int and (Int, Int) respectively.

(f) © = y=if ythen (2 = y) else z: (Bool — Bool) — Bool — (Bool

— Bool): v
(y,Bool) € T' @ {(z,Bool)}
(y,Bool) € T (z,Bool — Bool) € T I'® {(z,Bool)} I y : Bool
'y :Bool I'+ 2 : Bool — Bool I'+ 2=y :Bool — Bool

I'kif y then (z = y) else x : Bool — Bool
I"Fy=if ythen (z = y) else x : (Bool — Bool) — Bool — (Bool — Bool)

I'"bFa=y=if ythen (2 = y) else z : (Bool — Bool) — Bool — (Bool — Bool)
Note that the choice of type of z (and of the argument of ) is arbi-
trary. Hence, the next typing is also valid.
(g) x=y=1if ythen (z = y) else x: (Int — Bool) — Bool — (Int —
Bool): v/
3. Non-existence of a valid type derivation for the term:

t=x=1if fst(z) then snd(z) else x

Assume that there is a valid type derivation for the term. We will attempt
to derive a contradiction. We use the fact that if there exists a type
derivation, every step must use one of the rules above, and that the types
assigned to each variable must be consistent across the derivation.

First, ¢ has a type derivation if and only if t =
if fst(xz) then snd(x) else z has a type derivation, by using the
function abstraction rule. We will work with ¢; directly. The function
abstraction rule here does not give us more information.

Any type derivation for t; must end in the conditional rule. For this rule
to be applicable, we must have that the following are derivable:

(a) T F fst(x) : Bool
(b) T+ snd(x): T
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(c) ThHa:7T

where the type variable 7 is also the type of ;.

By using the projection rule on (a) and (b), we learn that the type of z
must be (Bool, 1) and (72, 7) for two fresh variables 71 and 75 respectively.
Matching the two, as x may only have one type, we must have 7 = T,
Ty = Bool, and thus the type of z is (Bool, 7).

However, from (c), we learn that the type of x is 7. It must be the case
that 7 = (Bool,7). This is not possible for any type 7, and we have a
contradiction.

Hence, there is no valid type derivation for the term ¢.
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