
CS 320
Computer Language Processing

Exercise Set 4

March 26, 2025

Exercise 1 For each of the following pairs of grammars, show that they are
equivalent by identifying them with inductive relations, and proving that the
inductive relations contain the same elements.

1. A1 : S ::= S + S | num
A2 : R ::= num R′ and R′ ::= +R R′ | ε

2. B1 : S ::= S(S)S | ε
B2 : R ::= RR | (R)ε

Exercise 2 Consider the following expression language over naturals, and a
halving operator:

expr ::= half(expr) | expr + expr | num

where num is any natural number constant ≥ 0.
We will design the operational semantics of this language. The semantics

should define rules that apply to as many expressions as possible, while being
subjected to the following safety conditions:

• the semantics should not permit halving unless the argument is even

• they should evaluate operands from left-to-right

Of the given rules below, choose a minimal set that satisfies the conditions
above. A set is not minimal if removing any rule does not change the set of
expressions that can be evaluated by the semantics, i.e. the domain of  , {x |
∃y. x y}, remains unchanged. The removed rule is said to be redundant.
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Exercise 3 Consider a simple programming language with integer arithmetic,
boolean expressions, and user-defined functions:

expr ::= true | false | num
expr == expr | expr + expr

expr && expr | if (expr) expr else expr

f(expr, . . . , expr) | x

where f represents a (user-defined) function, x represents a variable, and num
represents an integer.

1. Inductively define a substitution operation for the terms in this language,
which replaces every free occurrence of a variable x with a given expression
e.
The rule for substitution in an addition is provided as an example. Here,
t[x := e] represents the term t, with every free occurrence of x simultane-
ously replaced by e.

t1[x := e] → t′1 t2[x := e] → t′2
t1 + t2[x := e] → t′1 + t′2
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2. Write the rules for the operational semantics for this language, assuming
call-by-name semantics for function calls. In call-by-name semantics, func-
tion arguments are not evaluated before the call. Instead, the parameters
are merely substituted into the function body.

3. Under the following environment (with function names, parameters, and
bodies):

(sum, [x], if (x == 0) then 0 else x+ sum(x+ (−1)))

(rec, [ ], rec())

(default, [b, x], if b then x else 0)

evaluate each of the following expressions, showing the derivations:

(a) sum(2)

(b) if (1 == 2) then 3 else 4

(c) sum(sum(0))

(d) rec()

(e) default(false, rec())

How would the evaluations in each case change if we used call-by-value
semantics instead?

Exercise 4 Consider the following type system for a language with integers,
conditionals, pairs, and functions:

n is an integer literal
Γ ` n : Int

x : τ ∈ Γ
Γ ` x : τ

Γ ` e1 : Int Γ ` e2 : Int
Γ ` e1 + e2 : Int

Γ ` e1 : Int Γ ` e2 : Int
Γ ` e1 × e2 : Int

b is a boolean literal
Γ ` b : Bool

Γ ` e : Bool
Γ ` not e : Bool

Γ ` e1 : Bool Γ ` e2 : Bool
Γ ` e1 ∧ e2 : Bool

Γ ` e1 : Bool Γ ` e2 : Bool
Γ ` e1 ∨ e2 : Bool

Γ ` e1 : Bool Γ ` e2 : τ Γ ` e3 : τ

Γ ` if e1 then e2 else e3 : τ

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : (τ1, τ2)

Γ ` e : (τ1, τ2)

Γ ` fst(e) : τ1

Γ ` e : (τ1, τ2)

Γ ` snd(e) : τ2

Γ⊕ {x : τ1} ` e : τ2
Γ ` x ⇒ e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1e2 : τ2
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1. Given the following type derivation with type variables τ1, . . . , τ5, choose
the correct options:

(x, τ4) ∈ Γ

Γ ` x : τ4
Γ ` fst(x) : τ3

(x, τ4) ∈ Γ

Γ ` x : τ4
Γ ` snd(x) : τ5

Γ ` fst(x)(snd(x)) : τ2

Γ′ ` x ⇒ fst(x)(snd(x)) : τ1

(a) There are no valid assignments to the type variables such that the
above derivation is valid.

(b) In all valid derivations, τ2 = τ5.
(c) There are no valid derivations where τ2 = Int.
(d) In all valid derivations, τ4 = (τ3, τ5)

(e) In all valid derivations, τ2 = τ4 → τ1

(f) There is a valid derivation where τ1 = τ2.

2. For each of the following pairs of terms and types, provide a valid type
derivation or briefly argue why the typing is incorrect:

(a) x ⇒ x+ 5: Int → Int

(b) x ⇒ y ⇒ x+ y: Int → Int → Int

(c) x ⇒ y ⇒ y(2)× x: Int → Int → Int

(d) x ⇒ (x, x): Int → (Int, Int)

(e) x ⇒ y ⇒ if fst(x) then snd(x) else y: (Bool, Int) → (Int, Int)
→ Int

(f) x ⇒ y ⇒ if y then (z ⇒ y) else x: (Bool → Bool) → Bool → (Bool
→ Bool)

(g) x ⇒ y ⇒ if y then (z ⇒ y) else x: (Int → Bool) → Bool → (Int →
Bool)

3. Prove that there is no valid type derivation for the term

x ⇒ if fst(x) then snd(x) else x
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