Progress and Preservation of Typed Programs

Viktor Kunéak



Getting stuck according to semantics

If a term t makes no sense, our operational semantics will have no rule to define its
evaluation, so there is no t’ such that t~t’
Example: consider this expression:

if (5) 3 else 7

the expression 5 cannot be evaluated further and is a constant, but there are no rules
for when condition of if is a number constant; there are only such rules for boolean
constants.

Such terms, that are not constants and have no applicable rules, are called stuck,
because no further steps are possible.

Stuck terms indicate errors. Type checking is a way to detect them statically, without
trying to (dynamically) execute a program and see if it will get stuck or produce result.



Type Judgement
We want to know if errors happen in the sequence
ty » ) ~ t3 ~ ..
but we do not want to run the program to find all the t, t3,...

Instead, we approximate program execution by computing types that ty, tp, t3,... may
have and use this information to conclude that no errors can happen.

We write that an expression (term) t type checks and has type 7 using notation

t:7T

Like relation <, the colon symbol : is a binary relation.

We define it inductively, using inference rules.



Type checking rule for if expression

b:Bool, ti:71, t:7T
(if (b) t; else tp): T

We read it like this: WHEN

> the expression b type checks and has type Bool, and

> the expression t; type checks and has some type, 7, and

> the expression t, type checks and has the same type T
THEN
> the expression (if (b) t; else t,) also type checks and has type 7

This is the only rule for if, so we cannot conlude that (if (5) 3 else 7): 7 for some 7.
We say that (if (5) 3 else 7) does not type check.



Type Rule for Constants and Operations

All special case of function application: given arguments must match the declared
parameters:
fo(rtyxxTy)—>7To, t:T1, «oo, tp:Th

f(tl,...,tn)ZTO

We treat primitives like applications of functions e.g.

+ = IntxInt— Int
< : IntxInt— Bool
&& : Bool x Bool — Bool

so a special case is, e.g.,

+ @ (IntxInt)—Int, t;:Int, tp:Int
(t1+t,): Int




From Binary to Ternary Relation: Type Environment

If x is a parameter, we cannot determine whetehr x : Int or x : Bool without knowing

the declared type of x.
To specify the types of identifiers, we use a partial function that maps identifiers to
their types. We usually denote it with T.

Instead of a binary relation t: 7, we therefore use a ternary relation:

't 7T

meaning:
In the type environment I', term t type checks and has type 7.
The typing relation relates three things: T, t, T.

We could have written (T, t,7) € R for some relation R, but we choose to write THt: 7
(this is just a matter of notation).



Type Checking Rules with Environment

Instead of
b:Bool, ti:1, t:7T

(if (b) ty else t): T

the rule for if becomes:

I'tb:Bool, Tkt :7, Tkt:7
TH(if (b) t; else t,): 7T

The rule for function application becomes:

THf:Tix--xT,—>7T9, TI'Ft;:7q1, ..., THt,:7,
Tk f(t]_,...,tn)ZTo

Now we can give rule for parameters: Constants are easy anyway:

(x,7)el o -
TkEx:T I'+42: Int T't true : Bool



Type Rules: Program

Given initial program (e, t) define

L={(ftyxx1,—70) | (f,_(T1,...,Tp), tr, To) € €}

We say program type checks iff:
(1) the top-level expression type checks:

LFt:T

and
(2) each function body type checks:

1—‘0 69{()<1)7'-1))---,()<n»7'-n)} = triTo

for each (f,(x1,...,xn),(T1,..,Tp), tr, To) €€



Soundness through progress and preservation

Soundness theorem: if program type checks, its evaluation does not get stuck.
Proof uses the following two lemmas (a common approach):

» progress: if a program type checks, it is not stuck: if
'ttt

then either t is a constant (execution is done) or there exists t’ such that t~» t/

» preservation: if a program type checks and makes one ~» step,
then the result again type checks

in our simple system: it type checks and has the same type: if

I'Ht:7T

and t~t’ then
It 7



Proof of progress and preservation - case of if

We prove conjunction of progress and preservation by induction on term t such that
I'kt: 7. The operational semantics defines the non-error cases of an interpreter, which
enables case analysis. Consider if. By type checking rules, if can only type check if its
condition b type checks and has type Bool. By inductive hypothesis and progress
either b is constant or it can be reduced to a b’. If it is constant one of these rules
apply (so we get progress):

(if (true) t; else ty)~t;

(if (false) t; else ty) ~ t,
and the result, by type rule for if, has type T (preservation). If b” is not constant, the
assumption of the rule
b~ b’
(if (b) t; else ty) ~ (if (V') t; else t;)
applies, so t also makes progress. By preservation IH, b” also has type Bool, so the
entire expression can be typed as T re-using the type derivations for t; and t,.




Progress and preservation - user defined functions

Following the cases of operational semantics, either all arguments of a function have
been evaluated to a constant, or some are not yet constant.

If they are not all constants, the case is as for the condition of if, and we establish
progress and preservation analogously.

Otherwise rule

f(cty.orCn) ™ te[x1 i =c1,.o X =y

applies, so progress is ensured. For preservation, we need to show
Thtexy:=cpee0xpi=cp]: T (%)

where e(f) = ((x1,...,xn),(T1,...,Thn), tr, To) and t¢ is the body of f. According to
type rules T=7g and T'k¢; : 7;.



Progress and preservation - substitution and types

Function f definition type checks, so I+ tf: 7o where I/ =T @& {(x1,71),..., (X0, Th)}-
Consider the type derivation tree for t; and replace each use of I+ x; : T; with
Tk c;:7;. The result is a type derivation for (x):

Thte[xii=cpee0nXni=cn]: T (%)

Therefore, the preservation holds in this case as well.



Progress and preservation - substitution and types

Function f definition type checks, so I+ tf: 7o where I/ =T @& {(x1,71),..., (X0, Th)}-
Consider the type derivation tree for t; and replace each use of I+ x; : T; with
Tk c;:7;. The result is a type derivation for (x):

Thte[xii=cpee0nXni=cn]: T (%)
Therefore, the preservation holds in this case as well.

Exercise: prove the above step that replacing variables with constants of the same type
transforms term that has type derivation with type 7 into a term that again has a
derivation with type 7. Is there a more general statement?



