
CS 320
Computer Language Processing

Exercise Set 2

March 7, 2025

Exercise 1 Recall the pumping lemma for regular languages:
For any language L ⊆ Σ∗, if L is regular, there exists a strictly positive

constant p ∈ N such that every word w ∈ L with |w| ≥ p can be written as
w = xyz such that:

• x, y, z ∈ Σ∗

• |y| > 0

• |xy| ≤ p, and

• ∀i ∈ N. xyiz ∈ L

Consider the language L = {w ∈ {a}∗ | |w| is prime}. Show that L is not
regular by using the pumping lemma.

Solution L = {w ∈ {a}∗ | |w| is prime} is not a regular language.
To the contrary, assume it is regular, and so there exists a constant p such

that the pumping conditions hold for this language.
Consider the word w = an ∈ L, for some prime n ≥ p. By the pumping

lemma, we can write w = xyz such that |y| > 0, |xy| ≤ p, and xyiz ∈ L for all
i ≥ 0.

Assume that |xz| = m and |y| = k for some natural numbers m and k. Thus,
|xyiz| = m+ ik for all i. Since by the pumping lemma xyiz ∈ L for every i, it
follows that for every i, the length m + ik is prime. However, if m 6= 0, then
m divides m+mk, and if m = 0, then m+ 2k is not prime. In either case, we
have a contradiction.

Thus, this language is not regular.
�

Exercise 2 For each of the following languages, give a context-free grammar
that generates it:

1. L1 = {anbm | n,m ∈ N ∧ n ≥ 0 ∧m ≥ n}

2. L2 = {anbmcn+m | n,m ∈ N}

3. L3 = {w ∈ {a, b}∗ | ∃m ∈ N. |w| = 2m + 1 ∧ w(m+1) = a} (w is of odd
length, has a in the middle)

1

Solution

1. L1 = {anbm | n,m ∈ N ∧ n ≥ 0 ∧m ≥ n}

S ::= aSb | B
B ::= bB | ε

2. L2 = {anbmcn+m | n,m ∈ N}

S ::= aSc | B
B ::= bBc | ε

A small tweak to L1’s grammar allows us to keep track of addition precisely
here. Could we do something similar for {anbncn | n ∈ N}? (open-ended
discussion)

3. L3 = {w ∈ {a, b}∗ | ∃m ∈ N. |w| = 2m+ 1 ∧ w(m+1) = a}

S ::= aSb | bSa | aSa | bSb | a

Note that after each recursive step, the length of the inner string has the
same parity (i.e. odd).

�

Exercise 3 Consider the following context-free grammar G:

A ::= −A

A ::= A− id
A ::= id

1. Show that G is ambiguous, i.e., there is a string that has two different
possible parse trees with respect to G.

2. Make two different unambiguous grammars recognizing the same words,
Gp, where prefix-minus binds more tightly, and Gi, where infix-minus
binds more tightly.

3. Show the parse trees for the string you produced in (1) with respect to
Gp and Gi.

4. Produce a regular expression that recognizes the same language as G.

Solution

1. An example string is −id − id. It can be parsed as either −(id − id) or
(−id)− id. The corresponding parse trees are:

2

A

A

− id

− id

A

− A

A

id

− id

Left: prefix binds tighter, right: infix binds tighter.

2. Gp:
A ::= B | A− id
B ::= −B | id

Gi:
A ::= C | −A

C ::= id | C − id

3. Parse trees for −id − id with respect to Gp (left) and Gi (right):

A

A

B

− B

id

− id A

− A

C

id

− id

4. L(G) = L(−∗id(−id)∗). Note: () are part of the regular expression syntax,
not parentheses in the string.

�

Exercise 4 Consider the two following grammars G1 and G2:

G1 :

S ::= S(S)S | ε
G2 :

R ::= RR | (R) | ε
Prove that:

1. L(G1) ⊆ L(G2), by showing that for every parse tree in G1, there exists
a parse tree yielding the same word in G2.

2. (Bonus) L(G2) ⊆ L(G1), by showing that there exist equivalent parse
trees or derivations.

3

Solution

1. L(G1) ⊆ L(G2).
We give a recursive transformation of parse trees in G1 producing parse
trees in G2.

(a) Base case: The smallest parse tree is the ε production, which can
be transformed as (left to right):

S

ε

R

ε

(b) Recursive case: Rule S ::= S(S)S. The parse tree transformation
is:

S

S1 (2 S3)4 S5

R

R1 R

R

(2 R3)4

R5

The nodes are numbered to check that the order of children (left to
right) does not change. This ensures that the word yielded by the
tree is the same. The transformation is applied recursively to the
children S1, S3, S5 to obtain R1, R3, R5.
Verify that the tree on the right is indeed a parse tree in G2.

2. L(G2) ⊆ L(G1).
Straightforward induction on parse trees does not work easily. The rule
R ::= RR in G2 is not directly expressible in G1 by a simple transformation
of parse trees. However, we can note that, in fact, adding this rule to G1

does not change the language!
Consider the grammar G′

1 defined by S ::= SS | S(S)S | ε. We must show
that for every two words v and w in L(G1), vw is in L(G1), and so adding
the rule S ::= SS does not change the language.
We induct on the length |v|+ |w|.

(a) Base case: |v|+ |w| = 0. v = w = vw = ε ∈ L(G1). QED.
(b) Inductive case: |v|+ |w| = n+1. The induction hypothesis is that

for every v′, w′ with |v′|+ |w′| = n, v′w′ ∈ L(G1).
From the grammar, we know that either v = ε or v = x(y)z for
x, y, z ∈ L(G1). If v = ε, then w = vw ∈ L(G1). In the second case,
vw = x(y)zw. However, zw ∈ L(G1) by the inductive hypothesis, as
|z|+ |w| < n.
Thus, vw = x(y)z′ for z′ ∈ L(G1). Finally, since x, y, z′ ∈ L(G1), it
follows from the grammar rules that vw = x(y)z′ ∈ L(G1).

4

Thus, L(G1) = L(G′
1). It can now be shown just as in the first part, that

L(G2) ⊆ L(G′
1).

�

Exercise 5 Consider a context-free grammar G = (A,N, S,R). Define the
reversed grammar rev(G) = (A,N, S, rev(R)), where rev(R) is the set of rules
is produced from R by reversing the right-hand side of each rule, i.e., for each
rule n ::= p1 . . . pn in R, there is a rule n ::= pn . . . p1 in rev(R), and vice
versa. The terminals, non-terminals, and start symbol of the language remain
the same.

For example, S ::= abS | ε becomes S ::= Sba | ε.
Is it the case that for every context-free grammar G defining a language L,

the language defined by rev(G) is the same as the language of reversed strings
of L, rev(L) = {rev(w) | w ∈ L}? Give a proof or a counterexample.

Solution Consider any word w in the original language. Looking at the defi-
nition of a language L(G) defined by a grammar G:

w ∈ L(G) ⇐⇒ ∃T. w = yield(T) ∧ isParseTree(G,T)

There must exist a parse tree T for w with respect to G. We must show
that there exists a parse tree for rev(w) with respect to the reversed grammar
Gr = rev(G) as well.

We propose that this is precisely the tree Tr = mirror(T). Thus, we need
to show that rev(w) = yield(Tr) and that isParseTree(Gr, Tr).

1. rev(w) = yield(Tr): yield(·) of a tree is the word obtained by read-
ing its leaves from left to right. Thus, the yield of the mirror of a
tree yield(mirror(·)) is the word obtained by reading the leaves of the
original tree from right to left. Thus, yield(Tr) = yield(mirror(T)) =
rev(yield(T)) = rev(w).

2. isParseTree(Gr, Tr): We need to show that Tr is a parse tree with respect
to Gr. Consider the definition of a parse tree:

(a) The root of Tr is the start symbol of Gr: the root of Tr = mirror(T)
is the same as that of T . Since T ’s root node must be the start
symbol of G, it is also the root symbol of Tr. G and Gr share the
same start symbol in our transformation.

(b) The leaves are labelled by the elements of A: the mirror transfor-
mation does not alter the set or the label of leaves, only their order.
This property transfers from T to Tr as well.

(c) Each non-leaf node is labelled by a non-terminal symbol: the mirror
transformation does not alter the label of non-leaf nodes either, so
this property transfers from T to Tr as well.

(d) If a non-leaf node has children that are labelled p1, . . . , pn left-to-
right, then there is a rule (n ::= p1 . . . pn) in the grammar: consider
any non-leaf node in Tr, labelled n, with children labelled left-to-right
p1, . . . , pn. By the definition of mirror, the original tree T must have

5

the same node labelled n, with the reversed list of children left-to-
right, pn, . . . , p1. Since T is a parse tree for G, n ::= pn . . . p1 is a
valid rule in G, and by the reverse transformation, n ::= p1 . . . pn
must be a rule in Gr. Thus, the property is satisfied.

Thus, both properties are satisfied. Therefore, the language defined by the
reversed grammar is the reversed language of the original grammar.

�

6

