
Progress and Preservation of Typed Programs

Viktor Kunčak



Getting stuck according to semantics

If a term t makes no sense, our operational semantics will have no rule to define its
evaluation, so there is no t ′ such that t⇝ t ′
Example: consider this expression:

if (5) 3 else 7

the expression 5 cannot be evaluated further and is a constant, but there are no rules
for when condition of if is a number constant; there are only such rules for boolean
constants.

Such terms, that are not constants and have no applicable rules, are called stuck,
because no further steps are possible.

Stuck terms indicate errors. Type checking is a way to detect them statically, without
trying to (dynamically) execute a program and see if it will get stuck or produce result.



Type Judgement

We want to know if errors happen in the sequence

t1 ⇝ t2 ⇝ t3 ⇝ ...

but we do not want to run the program to find all the t2,t3, . . .

Instead, we approximate program execution by computing types that t1,t2,t3, . . . may
have and use this information to conclude that no errors can happen.

We write that an expression (term) t type checks and has type τ using notation

t :τ
Like relation ≤, the colon symbol : is a binary relation.

We define it inductively, using inference rules.



Type checking rule for if expression

b :Bool , t1 :τ, t2 :τ

(if (b) t1 else t2) : τ

We read it like this: WHEN
▶ the expression b type checks and has type Bool, and
▶ the expression t1 type checks and has some type, τ, and
▶ the expression t2 type checks and has the same type τ

THEN
▶ the expression (if (b) t1 else t2) also type checks and has type τ

This is the only rule for if, so we cannot conlude that (if (5) 3 else 7) : τ for some τ.
We say that (if (5) 3 else 7) does not type check.



Type Rule for Constants and Operations

All special case of function application: given arguments must match the declared
parameters:

f : (τ1× · · ·×τn)→ τ0, t1 :τ1, . . . , tn :τn
f (t1, . . . ,tn) : τ0

We treat primitives like applications of functions e.g.

+ : Int × Int→ Int
≤ : Int × Int→Bool
&& : Bool ×Bool→Bool

so a special case is, e.g.,

+ : (Int × Int)→ Int , t1 : Int , t2 : Int
(t1 + tn) : Int



From Binary to Ternary Relation: Type Environment
If x is a parameter, we cannot determine whetehr x : Int or x :Bool without knowing
the declared type of x .
To specify the types of identifiers, we use a partial function that maps identifiers to
their types. We usually denote it with Γ .

Instead of a binary relation t :τ, we therefore use a ternary relation:

Γ ⊢ t :τ
meaning:

In the type environment Γ , term t type checks and has type τ.

The typing relation relates three things: Γ , t, τ.
We could have written (Γ ,t ,τ) ∈R for some relation R, but we choose to write Γ ⊢ t :τ
(this is just a matter of notation).



Type Checking Rules with Environment
Instead of

b :Bool , t1 :τ, t2 :τ

(if (b) t1 else t2) : τ

the rule for if becomes:

Γ ⊢ b :Bool , Γ ⊢ t1 :τ, Γ ⊢ t2 :τ

Γ ⊢ (if (b) t1 else t2) : τ

The rule for function application becomes:

Γ ⊢ f :τ1× · · ·×τn→ τ0, Γ ⊢ t1 :τ1, . . . , Γ ⊢ tn :τn
Γ ⊢ f (t1, . . . ,tn) : τ0

Now we can give rule for parameters:

(x ,τ) ∈ Γ
Γ ⊢ x :τ

Constants are easy anyway:

Γ ⊢ 42 : Int Γ ⊢ true :Bool



Type Checking the Factorial Body

Let Γ = {(n, Int),(fact , Int→ Int)}
(n : Int) ∈ Γ

(n, Int) ∈ Γ (fact , Int→ Int) ∈ Γ Γ ⊢ n : Int Γ ⊢ 1 : Int
Γ ⊢ n : Int Γ ⊢ 1 : Int Γ ⊢ fact : Int→ Int Γ ⊢ n−1 : Int
Γ ⊢ n≤ 1 :Bool , Γ ⊢ 1 : Int Γ ⊢ n ∗ fact(n−1) : Int

Γ ⊢ (if (n≤ 1) 1 else n ∗ fact(n−1)) : Int

We applied given type rules and created a derivation tree to show that the final
expression type checks and has type Int.



Observation on Replacing Sub-Trees
Let Γ = {(n, Int),(fact , Int→ Int)}

(n : Int) ∈ Γ
(n, Int) ∈ Γ (fact , Int→ Int) ∈ Γ Γ ⊢ n : Int Γ ⊢ 1 : Int

Γ ⊢ n : Int Γ ⊢ 1 : Int Γ ⊢ fact : Int→ Int Γ ⊢ n−1 : Int
Γ ⊢ n≤ 1 :Bool , Γ ⊢ 1 : Int Γ ⊢ n ∗ fact(n−1) : Int

Γ ⊢ (if (n≤ 1) 1 else n ∗ fact(n−1)) : Int

Suppose we replace n : Int with 4 : Int.
Types of n and 4 are the same (Int), so we obtain a valid tree:

(fact , Int→ Int) ∈ Γ Γ ⊢ 4 : Int Γ ⊢ 1 : Int
Γ ⊢ 4 : Int Γ ⊢ 1 : Int Γ ⊢ fact : Int→ Int Γ ⊢ 4−1 : Int

Γ ⊢ 4≤ 1 :Bool , Γ ⊢ 1 : Int Γ ⊢ 4 ∗ fact(4−1) : Int
Γ ⊢ (if (4≤ 1) 1 else 4 ∗ fact(4−1)) : Int



How to Type Check a Program

Given initial program (e,t) (e are definitions and t is main level expression), define

Γ0 = {(f ,τ1× · · ·×τn→ τ0) | (f ,_,(τ1, . . . ,τn),tf ,τ0) ∈ e}
We say program type checks iff:
(1) the top-level expression type checks:

Γ0 ⊢ t :τ

and
(2) each function body type checks:

Γ0 ∪{(x1,τ1), . . . ,(xn,τn)} ⊢ tf :τ0

for each (f ,(x1, . . . ,xn),(τ1, . . . ,τn),tf ,τ0) ∈ e
Note: we assume that function names and names of their parameters are all distinct



Type Checking Factorial Program
pfact =(e, fact(2))
where e(fact)= (n, Int , if (n≤ 1) 1 else n ∗ fact(n−1), Int)

Γ0 = {(n, Int→ Int)}
The program type checks iff:
(1) the top-level expression type checks:

Γ0 ⊢ fact(2) : τ

and
(2) the body of the function (here there is only one) type checks to the declared result
of the function:

Γ0 ∪{(n, Int)} ⊢ if (n≤ 1) 1 else n ∗ fact(n−1) : Int

When type checking the body, we add the types of parameters into the environment.



Soundness through progress and preservation
Soundness theorem: if program type checks, its evaluation does not get stuck.
Proof uses the following two lemmas (a common approach):
▶ progress: if a program type checks, it is not stuck: if

Γ ⊢ t :τ

then either t is a constant (execution is done) or there exists t ′ such that t⇝ t ′
▶ preservation: if a program type checks and makes one ⇝ step,

then the result again type checks
in our simple system, it type checks and has the same type: if

Γ ⊢ t :τ

and t⇝ t ′ then
Γ ⊢ t ′ :τ



Proof of progress and preservation - case of if
We prove conjunction of progress and preservation by induction on term t such that
Γ ⊢ t :τ. The operational semantics defines the non-error cases of an interpreter, which
enables case analysis. Consider the case when t is if (b) t1 else t2. By type checking
rules, this can only type check if the condition b type checks and has type Bool. By
inductive hypothesis and progress either b is a constant or it can be reduced to a b′. If
it is constant one of these rules apply (so we get progress):

(if (true) t1 else t2)⇝ t1

(if (false) t1 else t2)⇝ t2
and the result, by type rule for if, has type τ (preservation). If b is not constant, then
it reduces to b′, so the assumption of the rule

b⇝ b′
(if (b) t1 else t2)⇝ (if (b′) t1 else t2)

applies, and hence t also makes progress; denote the result t ′. By preservation IH, b′
also has type Bool, so we can derive t ′ :τ, re-using the type derivations for t1 and t2.



Progress and preservation - user defined functions

Following the cases of operational semantics, either all arguments of a function have
been evaluated to a constant, or some are not yet constant.
If they are not all constants, the case is as for the condition of if, and we establish
progress and preservation analogously.
Otherwise rule

f (c1, . . . ,cn)⇝ tf [x1 := c1, . . . ,xn := cn]

applies, so progress is ensured. For preservation, we need to show

Γ ⊢ tf [x1 := c1, . . . ,xn := cn] : τ (∗)
where e(f )= ((x1, . . . ,xn),(τ1, . . . ,τn),tf ,τ0) and tf is the body of f . According to
type rules τ=τ0 and Γ ⊢ ci :τi .



Progress and preservation - substitution and types

Function f definition type checks, so Γ ′ ⊢ tf :τ0 where Γ ′= Γ ∪{(x1,τ1), . . . ,(xn,τn)}.
Consider the type derivation tree for tf and replace each use of Γ ′ ⊢ xi :τi with
Γ ⊢ ci :τi . By our Observation on Replacing Subtrees, the result is a type derivation for
(∗):

Γ ⊢ tf [x1 := c1, . . . ,xn := cn] : τ (∗)
Therefore, the preservation holds in this case as well.

Remark: Our proof establishes progress and preservation even though not all programs
are terminating and the terms may grow during evaluation. We only use inductive
hypothesis on the subterms, before the ⇝ step. We consider one step at a time and do
not depend on whether the ⇝ steps will eventually lead to a constant (normal form) or
not.


