
CS 320
Computer Language Processing

Exercise Set 3

March 19, 2025

Exercise 1 If L is a regular language, then the set of prefixes of words in L
is also a regular language. Given this fact, from a regular expression for L, we
should be able to obtain a regular expression for the set of all prefixes of words
in L as well.

We want to do this with a function prefixes that is recursive over the struc-
ture of the regular expression for L, i.e. of the form:

prefixes(ε) = ε

prefixes(a) = a | ε
prefixes(r | s) = prefixes(r) | prefixes(s)
prefixes(r · s) = . . .

prefixes(r∗) = . . .

prefixes(r+) = . . .

1. Complete the definition of prefixes above by filling in the missing cases.

2. Use this definition to find:

(a) prefixes(ab∗c)

(b) prefixes((a | bc)∗)

Solution The computation for prefixes(·) is similar to the computation of
first(·) for grammars.

1. The missing cases:

(a) prefixes(r · s) = prefixes(r) | r · prefixes(s). Either we have read r
partially, or we have read all of r, and a part of s.

(b) prefixes(r∗) = r ∗ · prefixes(r). We can consider r∗ = ε | r | rr | . . .,
and apply the rules for union and concatenation. Intuitively, if the
word has n ≥ 0 instances of r, we can read m < n instances of r, and
then a prefix of the next instance of r.

(c) prefixes(r+) = r∗ · prefixes(r). Same as previous. Why does the
empty case still appear?

1

2. The prefix computations are:

(a) prefixes(ab∗c) = ε | a | ab∗(b | c | ε). Computation:

prefixes(ab∗c) = prefixes(a) | a · prefixes(b∗c) [concatenation]
= (a | ε) | a · prefixes(b∗c) [a]

= (a | ε) | a · (prefixes(b∗) | b∗ prefixes(c)) [concatenation]
= (a | ε) | a · (prefixes(b∗) | b∗(c | ε)) [c]

= (a | ε) | a · (b∗ prefixes(b) | b∗(c | ε)) [star]
= (a | ε) | a · (b∗(b | ε) | b∗(c | ε)) [b]

= (a | ε) | a · (b∗(b | c | ε)) [rewrite]
= ε | a | a · (b∗(b | c | ε)) [rewrite]

(b) prefixes((a | bc)∗) = (a | bc)∗(ε | a | b | bc).

�

Exercise 2 Compute nullable, first, and follow for the non-terminals A and
B in the following grammar:

A ::= BAa

A ::=

B ::= bBc

B ::= AA

Remember to extend the language with an extra start production for the
computation of follow.

Solution

1. nullable: we get the constraints

nullable(A) = nullable(BAa) ∨ nullable(ε)

nullable(B) = nullable(bBc) ∨ nullable(AA)

We can solve these to get nullable(A) = nullable(B) = true.

2. first: we get the constraints (given that both A and B are nullable):

first(A) = first(BAa) ∪ first(ε)

= first(B) ∪ first(A) ∪ ∅
= first(B) ∪ first(A)

first(B) = first(bBc) ∪ first(AA)

= {b} ∪ first(A) ∪ first(A) ∪ ∅
= {b} ∪ first(A)

Starting from first(A) = first(B) = ∅, we iteratively compute the fixpoint
to get first(A) = first(B) = {a, b}.

2

3. follow: we add a production A′ ::= A EOF, and get the constraints (in
order of productions):

{EOF} ⊆ follow(A)

first(A) ⊆ follow(B)

{a} ⊆ follow(A)

{c} ⊆ follow(B)

first(A) ⊆ follow(A)

follow(B) ⊆ follow(A)

Substituting the computed first sets, and computing a fixpoint, we get
follow(A) = {a, b, c,EOF} and follow(B) = {a, b, c}.

�

Exercise 3 Given the following grammar for arithmetic expressions:

S ::= Exp EOF

Exp ::= Term Add

Add ::= + Term Add

Add ::= − Term Add

Add ::=

Term ::= Factor Mul

Mul ::= ∗ Factor Mul

Mul ::= / Factor Mul

Mul ::=

Factor ::= num

Factor ::= (Exp)

1. Compute nullable, first, follow for each of the non-terminals in the gram-
mar.

2. Check if the grammar is LL(1). If not, modify the grammar to make it so.

3. Build the LL(1) parsing table for the grammar.

4. Using your parsing table, parse or attempt to parse (till error) the following
strings, assuming that num matches any natural number:

(a) (3 + 4) ∗ 5 EOF

(b) 2 + + EOF

(c) 2 EOF

(d) 2 ∗ 3 + 4 EOF

(e) 2 + 3 ∗ 4 EOF

3

Solution

1. We can compute the nullable, first, and follow sets as:

(a) nullable:

nullable(S) = false

nullable(Exp) = false

nullable(Add) = true

nullable(Term) = false

nullable(Mul) = true

nullable(Factor) = false

(b) first: we have constraints:

first(S) = first(Exp)

first(Exp) = first(Term)

first(Add) = {+} ∪ {−} ∪ ∅
first(Term) = first(Factor)

first(Mul) = {∗} ∪ {/} ∪ ∅
first(Factor) = {num} ∪ {(}

which can be solved to get:

first(S) = {num, (}
first(Exp) = {num, (}
first(Add) = {+,−}

first(Term) = {num, (}
first(Mul) = {∗, /}

first(Factor) = {num, (}

(c) follow: we have constraints (for each rule, except empty/terminal
rules):

{EOF} ⊆ follow(Exp)

first(Add) ⊆ follow(Term)

follow(Exp) ⊆ follow(Term)

follow(Exp) ⊆ follow(Add)

first(Add) ⊆ follow(Term)

follow(Add) ⊆ follow(Term)

first(Add) ⊆ follow(Term)

follow(Add) ⊆ follow(Term)

first(Mul) ⊆ follow(Factor)

follow(Term) ⊆ follow(Factor)

follow(Term) ⊆ follow(Mul)

first(Mul) ⊆ follow(Factor)

follow(Mul) ⊆ follow(Factor)

4

first(Mul) ⊆ follow(Factor)

follow(Mul) ⊆ follow(Factor)

{)} ⊆ follow(Exp)

The fixpoint can again be computed to get:

follow(S) = {}
follow(Exp) = {),EOF}
follow(Add) = {),EOF}

follow(Term) = {+,−,),EOF}
follow(Mul) = {+,−,),EOF}

follow(Factor) = {+,−, ∗, /,),EOF}

2. The grammar is LL(1), there are no conflicts. Demonstrated by the pars-
ing table below.

3. LL(1) parsing table:

num + − ∗ / () EOF
S 1 1

Exp 1 1
Add 1 2 3 3
Term 1 1
Mul 3 3 1 2 3 3

Factor 1 2

4. Parsing the strings:

(a) (3 + 4) ∗ 5 EOF X

(b) 2 + + EOF — fails on the second +. The corresponding error cell
in the parsing table is (Term,+).

(c) 2 EOF X

(d) 2 ∗ 3 + 4 EOF X

(e) 2 + 3 ∗ 4 EOF fails on the ∗. Error at (Add, ∗).

Example step-by-step LL(1) parsing state for 2 ∗ 3 + 4:

5

Lookahead Stack Next Rule
2 S S ::= Exp EOF
2 Exp EOF Exp ::= Term Add
2 Term Add EOF Term ::= Factor Mul
2 Factor Mul Add EOF Factor ::= num
2 num Mul Add EOF match(num)
∗ Mul Add EOF Mul ::= ∗ Factor Mul
∗ ∗ Factor Mul Add EOF match(∗)
3 Factor Mul Add EOF Factor ::= num
3 num Mul Add EOF match(num)
+ Mul Add EOF Mul ::=
+ Add EOF Add ::= + Term Add
+ + Term Add EOF match(+)
4 Term Add EOF Term ::= Factor Term∗
4 Factor Mul Add EOF Factor ::= num
4 num Mul Add EOF match(num)

EOF Mul Add EOF Mul ::=
EOF Add EOF Add ::=
EOF EOF match(EOF)

�

Exercise 4 Argue that the following grammar is not LL(1). Produce an
equivalent LL(1) grammar.

E ::= num+ E | num− E | num

Solution The language is clearly not LL(1), as on seeing a token num, we
cannot decide whether to continue parsing it as num+E, num−E, or the end.

The notable problem is the common prefix between the rules. We can sep-
arate this out by introducing a new non-terminal T . This is a transformation
known as left factorization.

E ::= num T

T ::= +E | −E | ε

�

Exercise 5 Consider the following grammar:

S ::= S(S) | S[S] | () | []

Check whether the same transformation as the previous case can be ap-
plied to produce an LL(1) grammar. If not, argue why, and suggest a different
transformation.

6

Solution Applying left factorization to the grammar, we get:

S ::= S T | S T | () | []
T ::= (S) | [S]

This is not LL(1), as on reading a token “(”, we cannot decide whether this
is the final parentheses (base case) in the expression, or whether there is a T
following it.

The problem is that this version of the grammar is left-recursive. A recursive-
descent parser for this grammar would loop forever on the first rule. This is
caused by the fact that our parsers are top-down, left to right. We can fix
this by moving the recursion to the right. This is generally called left recursion
elimination.

Transformed grammar steps (explanation below):

S ::= ()S′ | []S′

S′ ::= (S)S′ | [S]S′ | ε

To eliminate left-recursion in general, consider a non-terminal A ::= Aα | β,
where β does not start with A (not left-recursive). We can remove the left
recursion by introducing a new non-terminal, A′, such that:

A ::= βA′

A′ ::= αA′ | ε

i.e., for the left-recursive rule Aα, we instead attempt to parse an α followed by
the rest. In exchange, the base case β now expects an A′ to follow it. Note that
β can be empty as well.

Intuitively, we are shifting the direction in which we look for instances of A.
Consider a partial derivation starting from βααα. The original version of the
grammar would complete the parsing as:

A

A

A

A

β

α

α

α

but with the new grammar, we parse it as:

7

A

β A′

α A′

α A′

α A′

ε

There are two main pitfalls to remember with left-recursion elimination:

1. it may need to be applied several times till the grammar is unchanged,
as the first transformation may introduce new (indirect) recursive rules
(check A ::= AAα | ε).

2. it may require inlining some non-terminals, when the left recursion is
indirect. For example, consider A ::= Bα,B ::= Aβ, where there is no
immediate reduction to do, but inlining B, we get A ::= Aβα, where the
elimination can be applied.

�

8

