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Why types are good

Prevent errors: many simple errors are caught by types
Ensure memory safety or other desired properties
Document the program (purpose of parameters)

Make it easier to change program

Make compilation more efficient: remove checks, specialize operations



An unsound (broken) type system

A type system that aims to ensure some property but, in fact, fails.

For example: suppose we have a system that aims to ensure that if parameter is of
type Int, then it is only invoked with values of type Int. But we find a (tricky) program
that passes the type checker and ends up invoking the function with the reference to a
string. This is unsoundness.

Sometimes unsoundness is an intentional compromise:

> type casts in C
» covariance for function arguments and arrays

Often unintentional (unsoundness bugs in type systems), due to subtle interactions
between e.g. subtyping, generics, mutation, higher-order functions, recursion
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Abstract

We present short programs that demonstrate the unsound-
ness of Java and Scala’s current type systems. In partic-
ular, these programs provide parametrically polymorphic
functions that can turn any type into any type without
(down)casting. Fortunately, parametric polymorphism was
not integrated into the Java Virtual Machine (JVM), so these
examples do not demonstrate any unsoundness of the JVM.
Nonetheless, we discuss broader implications of these find-
ings on the field of programming languages.
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ture, we often develop a minimal calculus employing that
feature and then verify key properties of that calculus. But
these results provide no guarantees about how the feature in
question will interact with the many other common features
one might expect for a full language. The unsoundness we
identify results from such an interaction of features. Thus,
in addition to valuing the development and verification of
minimal calculi, our community should explore more ways
to improve our chances of identifying abnormal interactions
of features within reasonable time but without unreasonable
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1. Introduction

In 2004, Java 5 introduced generics, i.e. parametric polymor-
phism, to the Java programming language. In that same year,
Scala was publicly released, introducing path-dependent
types as a primary language feature. Upon their release
12 years ago, both languages were unsound; the examples
we will present were valid even in 2004. But despite the fact
that Java has been formalized repeatedly [3, 4, 6, 9, 10, 18,
26, 38], this unsoundness has not been discovered until now.
It was found in Scala in 2008 [40], but the bug was deferred
and its broader significance was not realized until now.

—same paper, published in November 2016



Goal of today's lecture

Explain that “expression has a type” is an inductively defined relation
Define precisely a small language:

> its abstract syntax (as certain math expressions)
> its operational semantics (interpreter written in math)
> its type rules

Show that our type system prevents certain kinds of errors



Background: inductively defined relations and sets
Define relation r €Z x Z using these rules (x,y range over Z):

00y (zero)
y)e
% (increase right)
X,y
y)e
( +()1( Y)+ 1r) <’ (increase both)
X Yy
y)e
% (decrease both)

For which of the following relations r are all the above rules true?
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Example derivation of (—3,—1)er
(0,0)er
(0,1)er
(0,2)er
(-L1)er
(—2,0)er
(=3,-1)er
—(0,0) o (zero)
(x,y)er

————— (increase right)
(x,y+1l)er

(x,y)er
(x+1Ly+1)er

(increase both)

(x,y)er

m (decrease bOth)



Proof that our rules define {(x,y)|x <y}

Establish two directions:

» if there exists a derivation, then x <y
Strategy: induction on derivation, go through each rule

» if x <y then there exists a derivation
Strategy (problem-specific): we can find an algorithm that given x,y finds
derivation tree (what is the algorithm?)
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» if there exists a derivation, then x <y
Strategy: induction on derivation, go through each rule

» if x <y then there exists a derivation
Strategy (problem-specific): we can find an algorithm that given x,y finds
derivation tree (what is the algorithm?)

Example algorithm: start from (0,0), then

derive (0,y —x) in y —x steps of “increase right”,

then depending on whether x <0 or x>0 apply “increase both” or “decrease
both"” rule |x| times.



Context-Free Grammars as Inductively Defined Relations

Inductive definitions work on multiple relations as well
Context-free grammars: mutually defined sets of strings (sets are relations)
Each non-terminal corresponds to a set of strings. Let A={a, b}

context-free grammar rule | inductive rule (S, N € A*)

weN
S = aN aweSs
N == ¢ celN

wieN,wre N
N == aNNb B

awywobe N

Sets of first symbols for each non-terminal is also an inductively definable relation



Inductively defined relations

We can use inductive rules to define type systems, grammars, interpreters, . ..
We define a relation r using rules of the form

t(x)er,... t,(x)er
t(x)er

where t;(X) € r are assumptions and t(x) € r is the conclusion.
When n=0 (no assumptions), the rule is called an axiom.

A derivation tree has nodes marked by tuples t(3) for some specific values 3 of x.

We define relation r as the set of all tuples for which there exists a derivation tree.
One can prove (in general case) that tuples for which there exists a derivation tree give
us precisely the smallest relation that satisfies the rules!



