
Language
Definition
A language over alphabet A is a set L⊆A∗. Example for A= {0,1}:
▶ a finite language like L= {1,10,1001} or the empty language ;
▶ infinite but very difficult to describe (there are random languages: there exist

more languages as subsets of A∗ than there are finite descriptions)
▶ infinite but having some nice structure, where words follow a certain “pattern”

that we can describe precisely and check efficiently ← these are our focus
L2 = {01,0101,010101, . . .} = those non-empty words that are of the form 01 . . .01
where the block 01 is repeated some finite positive number of times. Using notation
(01)n for a word consisting of block 01 repeated n times, we can write
L2 = {(01)n | n≥ 1}.
Languages are sets, so we can take their union (∪), intersection (∩), and apply other
set operations on languages.
Languages ; and {ϵ} are very different: ; is a set that contains no words, whereas {ϵ}
contains precisely one word, the word of length zero.



Concatenating Languages
In addition to operations such as intersection and union that apply to sets in general,
languages support additional operations, which we can define because their elements
are words. The first one translates concatenation of words to sets of words, as follows.
Definition (Language concatenation)
Given L1 ⊆A∗ and L2 ⊆A∗, define L1 ·L2 = {w1w2 |w1 ∈ L1,w2 ∈ L2}
Example: {ϵ,a,aa} · {b,bb}= {b,bb,ab,abb,aab,aabb}
The definition above states that w ∈ L1L2 if and only if there is one or more ways to
split w into words w1 and w2, so that w =w1w2 and such that w1 ∈ L1 and w2 ∈ L2.
Definition (Language exponentiation)
Given L⊆A∗, define

L0 = {ϵ}
Ln+1 = L ·Ln

Theorem
Given L⊆A∗, Ln = {w1 . . .wn |w1, . . . ,wn ∈ L}



Expanding the Definition
If L is an arbitrary language, compute each of the following:
▶ L;
▶ ;L
▶ L{ϵ}
▶ {ϵ}L
▶ ;{ϵ}
▶ LL
▶ {ϵ}n
▶ {w1}{w2}

Note the difference in results between concatenation with:
▶ the empty language ;, which contains no words
▶ the language {ϵ}, which contains exactly one word, ϵ

Is it the case that always L1L2 = L2L1? Prove or give counterexample.
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Concatenation of Languages

Let A be alphabet. Consider the set of all languages L⊆A∗

Is this a monoid?

▶ Is there a neutral element?
▶ Which law needs to hold? Does it hold?

Does the cancelation law hold?



Concatenation of Languages

Let A be alphabet. Consider the set of all languages L⊆A∗

Is this a monoid?
▶ Is there a neutral element?

▶ Which law needs to hold? Does it hold?

Does the cancelation law hold?



Concatenation of Languages

Let A be alphabet. Consider the set of all languages L⊆A∗

Is this a monoid?
▶ Is there a neutral element?
▶ Which law needs to hold? Does it hold?

Does the cancelation law hold?



Concatenation of Languages

Let A be alphabet. Consider the set of all languages L⊆A∗

Is this a monoid?
▶ Is there a neutral element?
▶ Which law needs to hold? Does it hold?

Does the cancelation law hold?



Representing Languages in Programs

In general not possible: formal languages need not be recursively enumerable sets.
A reasonably powerful representation: computable characteristic function.
As for any subset of a set, a language L⊆A∗ is given by its characteristic function
fL :A∗→{0,1} defined by: fL(w) = (if w ∈ L then 1 else 0).
Here we use the contains field as the characteristic function and build the language
L2 = {(01)n | n≥ 1}.
case class Lang[A](contains: List[A] -> Boolean)
def f(w: List[Int]): Boolean = w match {
case Cons(0, Cons(1, Nil())) => true
case Cons(0, Cons(1, wRest)) => f(wRest)
case _ => false

}
val L2 = Lang(f)
val test = L2.contains(0^:1^:0^:1^:Nil()) ^/ true



Representing Language Concatenation

We can use code to express concatenation of computable languages.
def concat(L1: Lang[A], L2: Lang[A]): Lang[A]= {
def f(w: List[A]) = {
val n = w.length
def checkFrom(i: BigInt) = {
require(0 <= i ^& i <= n)
(L1.contains(w.slice(0, i)) ^& L2.contains(w.slice(i, n))) ^|
(i < n ^& checkFrom(i + 1))

}
checkFrom(0, w.length)

}
Lang(f) ^/ return the language whose characteristic function is f

}



Repetition of a Language: Kleene Star
Definition (Kleene star)
Given L⊆A∗, define

L∗=
⋃
n≥0

Ln

Theorem
For L⊆A∗, for every w ∈A∗ we have w ∈ L∗ if and only if

∃n≥ 0.∃w1, . . . ,wn ∈ L. w =w1 . . .wn

{a}∗= {ϵ,a,aa,aaa, . . .}
{a,bb}∗= {ϵ,a,bb,abb,bba,aa,bbbb,aabb, . . .} (describe this language)

▶ words whose all contiguous blocks of b-s have even length
Can L∗ be finite for some L? If so, describe all such L
▶ {ϵ}∗= {ϵ}, ;∗= {ϵ}, for all others L has a word of length ≥ 1, so L∗ is infinite
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Star and the Empty Word
Concatenating with an empty word has no effect, so we have the following:

L∗=(L \ {ϵ})∗= {ϵ}∪
⋃
n≥1

(L \ {ϵ})n

Moreover, w ∈ L∗ if and only if either w = ϵ or, for some n where 1≤ n≤ |w | (note ≤),

w =w1 . . .wn

where wi ∈ L and |wi | ≥ 1 for all i where 1≤ i ≤ n.

▶ we omit ϵ because it leaves concatenation the same
▶ we can assume n≤ |w | because all blocks have length at least one

If L is computable (has a computable characterstic function), is L∗ also computable?
▶ try all possible ways of splitting w
▶ if k = |w |, for each point between the letters of w you can decide to split there or

not, so there are 2k−1 ways to split: w =□ |□| . . . |□|︸ ︷︷ ︸
k−1

□

▶ Exercise: find a way to check w ∈ L∗ with polynomially many invocations of w ∈ L
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Starring: {a,ab}

Let A= {a,b} and L= {a,ab}.
Come up with a property P(w) that describes the language L∗, such that:

L∗= {w ∈A∗ |P(w)}

Prove that the property and L∗ denote the same language.

Example properties:
▶ does not begin with b
▶ does not contain bb

Conjectured property P(w): there is an “a” immediately before every “b” inside w .
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Proving the Property

L∗= {w ∈A∗ |P(w)}
where P(w) is: there is an “a” immediately before every “b” occurrence inside w .
How to prove that this P(w) is correct? Show two directions of set equality:
▶ {a,ab}∗ ⊆ {w |P(w)}, that is: if w is a concatenation w1...wn where each wi is

either a or ab, then, inside w , there is an “a” immediately before every “b”.
▶ {w |P(w)} ⊆ {a,ab}∗, that is: if we have a string such that every occurrence of b

has an a immediately left to it, then we can split w into some number of blocks
w1 . . .wn such that each wi is either a or ab.



Regular Expressions



Regular Expressions

Mathematical expressions used to denote finite and infinite languages. Definition: a
regular expression over language A is build inductively as follows:
▶ ;, denoting the empty set of strings
▶ ϵ, denoting the language {ϵ} containing only empty word
▶ a for a ∈A, denoting the language with one word of length one, {a}
▶ r1 | r2 denoting the union of languages
▶ r1r2 denoting concatenation of languages of r1 and r2
▶ r∗ denoting the Kleene star of the language of r (a high priority operator)

Examples:
▶ (a|ab)∗ denoting the language {a,ab}∗
▶ (a|b|c) (a|b|c |0|1)∗ denotes {a,b,c}{a,b,c ,0,1}∗, the identifiers that start with

one of the three letters a,b,c followed by a sequence of the letters or digits 0,1.



Example Use of Regular Expressions: grep
grep is a widely used command-line (terminal) tool that filters those lines that match
a given pattern. Pattern can be a fixed string,
$ cd /etc/dictionaries-common
$ tail -n 5 words
zwieback
zwieback's
zygote
zygote's
zygotes
$ grep 'ncompat' words
incompatibilities
incompatibility
incompatibility's
incompatible
incompatible's
incompatibles
incompatibly



grep for clp using a regular expression
Find words that start with c, contain l and end with p:
$ grep '^c.*l.*p$' words
cantaloup
clamp
clap
claptrap
clasp
cleanup
clip
clomp
clop
clump
cowslip
Some notation specific to grep:
▶ . means any character, so .* means any string
▶ ^ means start of the line (otherwise it adds .* in front)
▶ $ means end of the line (otherwise it adds .* at the end)



Another grep Example

Use ‘-E‘ so you don’t have to escape union | and parentheses (, )
$ grep -E '^(b|c)(a|i|o)*t$' words
bait
bat
bit
boat
boot
bot
cat
coat
coot
cot
ct
One can also use regular expressions for syntax highlighting



• [a..z] = a|b|...|z                (use ASCII ordering)
(also other shorthands for finite languages)

• e? (optional expression)
• e+ (repeat at least once)
• ek..* 

  = ek e*       ep..q  = ep (ε|e)q-p

• complement: !e   (A* \ e )     -non-obvious, use automata
• intersection: e1 & e2   (e1 ∩ e2)      =  ! ( !e1| !e2)

Some Regular Expression Operators that 
can be Defined in Terms of Previous Ones



Lexical Analysis



Lexical Analysis
res  =      14  +  arg  *   3 (character stream)

Lexer gives:

“res”, “=”,  “14”,  “+”, “arg”, “*”,  “3” (token strem)

Lexical analyzer (lexer, scanner, tokenizer) is often 
specified using regular expressions for each kind of token
It groups characters into tokens, maps stream to stream
● A simple lexer could represent all tokens as strings
● For efficiency and convenience we represent tokens 

using more structured data types



Lexical Analyzer - Key Ideas
Typically needs only small amount of memory.
It is not difficult to construct a lexical analyzer manually 

For such lexers, we use the first character to decide on token 
class: first(L) = { a | aw in L }

We use longest match rule: lexical analyzer should eagerly accept the 
longest token that it can recognize from this point, even if this means 
that later characters will not form valid token.

It is possible to automate the construction of lexical analyzers,  using a 
conversion of regular expressions to automata.
Tools that automate this construction are part of compiler-compilers, 
such as JavaCC described in the “Tiger book”.



While Language – A Program

num = 13; 
while (num > 1) { 
  println("num = ", num); 
  if (num % 2 == 0) { 
    num = num / 2; 
  } else { 
    num = 3 * num + 1; 
  } 
} 



Tokens (Words) of the While Language
Ident ::=

letter (letter | digit)*

integerConst ::= digit digit*

keywords
if  else  while  println

special symbols
(  )   &&  <   ==  +  -  *  /  %  !  - {  }  ;  ,  

letter ::= a | b | c | … | z | A | B | C | … | Z
digit ::= 0 | 1 | … | 8 | 9

regular
expressions



Manually Constructing Lexers
by example



i
d
3
=
0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

Stream of Char-s:
class CharStream(fileName : String){ 
 val file = new BufferedReader(
      new FileReader(fileName)) 
  var current : Char = ' ' 
  var eof : Boolean = false
  def next = { 
    if (eof) 
     throw EndOfInput("reading" + file)
    val c = file.read() 
    eof = (c == -1) 
    current = c.asInstanceOf[Char]
  }
  next // init first char
}

Stream of Token-s
sealed abstract class Token 
case class ID(content : String) // “id3” 

extends Token 
case class IntConst(value : Int) // 10 

extends Token 
case object AssignEQ extends Token 
case object CompareEQ 

extends Token 
case object MUL extends Token // *
case  object PLUS extends Token //+
case object LEQ extends Token //‘<=‘
case object OPAREN extends Token
case class CPAREN extends Token
case object IF extends Token
case object WHILE extends Token 
case object EOF extends Token

// End Of File

class Lexer(ch : CharStream) { 
  var current : Token 
  def next : Unit = { 
    lexer code goes here 
  }
}



Recognizing Identifiers and Keywords
if (isLetter) {
  b = new StringBuffer
  while (isLetter || isDigit) {
     b.append(ch.current)
     ch.next
  }
 keywords.lookup(b.toString) { 
  case None=> token=ID(b.toString)
  case Some(kw) => token=kw
 }

}

Keywords look like identifiers, but 
are simply indicated as keywords in 
language definition. Introduce a 
constant Map from strings to 
keyword tokens. If not in map, then 
it is ordinary identifier.

regular expression for identifiers:
letter (letter|digit)* 



Integer Constants and Their Value

if (isDigit) {
  k = 0
  while (isDigit) {
    k = 10*k + toDigit(ch.current)
    ch.next
  }
  token = IntConst(k)
}

regular expression for integers:
digit digit*



Deciding which Token is Coming

• How do we know when we are supposed to analyze string, 
when integer sequence etc? 

• Manual construction: use lookahead (next symbol in stream) to 
decide on token class 

• compute first(e) - symbols with which e can start
• check in which first(e) current token is
• If L ⊆ A* is a language, then first(L) is set of all alphabet 

symbols that start some word in L
first(L) = {a∈A|∃v∈A* . a v ∈ L}



First Symbols of a Set of Words

first({a, bb, ab}) = {a,b}
first({a, ab}) = {a}
first({aaaaaaa}) = {a}
first({a}) = {a}
first({}) = {}
first({ε}) = {}
first({ε,ba}) = {b}



first of a regexp
• Given regular expression e, how to compute first(e)? 

– use automata (we will see this later)
– rules that directly compute them (also work for 

grammars, we will see them for parsing) - now
• Examples of first(e) computation: 

– first(ab*) = {a}
– first(ab*|c) = {a,c}
– first(a*b*c) = {a,b,c}
– first( (cb|a*c*)d*e) ) = 

• Notion of nullable(r) - whether empty string belongs to the 
regular language. 



Computing ’nullable’ for regular expressions

If e is regular expression (its syntax tree), then L(e) is the language denoted by it.
For L⊆A∗ we defined nullable(L) as ϵ ∈ L
If e is a regular expression, we can compute nullable(e) to be equal to nullable(L(e)),
as follows:

nullable(;) = false
nullable(ϵ) = true
nullable(a) = false

nullable(e1|e2) = nullable(e1)∨nullable(e2)

nullable(e∗) = true
nullable(e1e2) = nullable(e1)∧nullable(e2)



Computing ’first’ for regular expressions

For L⊆A∗ we defined: first(L)= {a ∈A | ∃v ∈A∗. av ∈ L}.
If e is a regular expression, we can compute first(e) to be equal to first(L(e)), as
follows:

first(;) = ;
first(ϵ) = ;
first(a) = {a}, for a ∈A

first(e1|e2) = first(e1)∪first(e2)

first(e∗) = first(e)
first(e1e2) = if (nullable(e1)) then first(e1)∪first(e2)

else first(e1)



Clarification for first of concatenation

Let e be a∗b. Then L(e)= {b,ab,aab,aaab, . . .}
first(L(e))= {a,b}

e = e1e2 where e1 = a∗ and e2 = b. Thus, nullable(e1).

first(e1e2)= first(e1)∪first(e2)= {a}∪ {b}= {a,b}
It is not correct to use first(e)=? first(e1)= {a}.
Nor is it correct to use first(e)=? first(e2)= {b}.
We must use their union.


