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1 Languages and Automata

Exercise 1 Consider the following languages defined by regular expressions:

1. {a, ab}∗

2. {aa}∗ ∪ {aaa}∗

3. a+b+

and the following languages defined in set-builder notation:

A. {w | ∀i.0 ≤ i ≤ |w| ∧ w(i) = b =⇒ (i > 0 ∧ w(i−1) = a)}

B. {w | ∀i.0 ≤ i < |w| =⇒ w(i) = b =⇒ w(i+1) = a}

C. {w | ∃i.0 < i < |w| ∧ w(i) = b ∧ w(i−1) = a}

D. {w | (|w| = 0 mod 2 ∨ |w| = 0 mod 3) ∧ ∀i.0 ≤ i < |w| =⇒ w(i) = a}

E. {w | ∀i.0 ≤ i < |w| ∧ w(i) = a =⇒ w(i+1) = b}

F. {w | ∃i.0 < i < |w| − 1 ∧ (∀y.0 ≤ y ≤ i =⇒ w(y) = a) ∧ (∀y.i < y <
|w| =⇒ w(y) = b)}

For each pair (e.g. 1-A), check whether the two languages are equal, provid-
ing a proof if they are, and a counterexample word that is in one but not the
other if unequal.

Solution Equal language pairs: 1 7→ A, 2 7→ D, 3 7→ F .
Counterexamples (·⋆ means the word is in the alphabet-labelled language,

and the number-labelled language otherwise):

A B C D E F
1 - a a a aa a
2 ab⋆ ba⋆ ab⋆ - ab⋆ aa
3 -
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We prove the first case as an example.

{a, ab}∗ = {w | ∀i.0 ≤ i ≤ |w| ∧ w(i) = b =⇒ (i > 0 ∧ w(i−1) = a)}

We must prove both directions, i.e. that {a, ab}∗ ⊆ {w | P (w)} and that
{w | P (w)} ⊆ {a, ab}∗.
Forward: {a, ab}∗ ⊆ {w | P (w)}:

We must show that for all w ∈ {a, ab}∗, P (w) holds. For any i ∈ N, given
that 0 ≤ i ≤ |w| ∧ w(i) = b, we need to show that i > 0 ∧ w(i−1) = a.

From the definition of ∗ on sets of words, we know that there must exist
n < |w| words w1, . . . , wn ∈ {a, ab} such that w = w1 . . . wn. The index i
must be in the range of one of these words, i.e. there exist 1 ≤ m ≤ n and
0 ≤ j < |wm| such that w(i) = wm(j).

We know that w(i) = b and wm ∈ {a, ab} by assumption. The case wm = a
is a contradiction, since it cannot contain b. Thus, wm = ab. We know that
w(i) = wm(j) = b, so j = 1. Thus, w(i−1) = wm(j−1) = wm(0) = a, as required.
Since i− 1 ≥ 0, being an index into w, i > 0 holds as well. Hence, P (w) holds.
Backward: {w | P (w)} ⊆ {a, ab}∗:

We must show that for all w such that P (w) holds, w ∈ {a, ab}∗. We know
by definition of ∗ again, that w ∈ {a, ab}∗ if and only if there exist n < |w|
words w1, . . . , wn ∈ {a, ab} such that w = w1 . . . wn. We attempt to show that
if P (w) holds, then w admits such a decomposition.

We proceed by induction on the length of w.
Induction Case |w| = 0: The empty word has a decomposition w = ϵ (with
n = 0 in the decomposition). QED.
Induction Case |w| = 1: The word w is either a or b. We know that P (w) holds,
so w = a (why?). The decomposition is w = a, with n = 1 and w1 = a. QED.
Induction Case |w| > 1:

Induction hypothesis: for all words v such that |v| < |w| and P (v) holds, v
admits a decomposition into words in {a, ab}, and thus v ∈ {a, ab}∗.

We need to show that if P (w) holds, then w admits such a decomposition
as well. Split the proof based on the first two characters of w. There are four
possibilities. We give the name v to the rest of w.

1. w = aav: P (w) holds, so ∀i.0 ≤ i ≤ |w| ∧ w(i) = b =⇒ (i > 0 ∧ w(i−1) =
a). In particular, we can restrict to i > 1 as

∀i.2 ≤ i ≤ |w| ∧ w(i) = b =⇒ (i > 0 ∧ w(i−1) = a)

but w(i) for i ≥ 2 is simply v(i−2). Rewriting:

∀i.2 ≤ i ≤ |w| ∧ v(i−2) = b =⇒ (i > 0 ∧ v(i−3) = a)

Finally, since the statement holds for all i, we can replace i by i+2 without
loss of generality, using |v| = |w| − 2:

∀i.0 ≤ i ≤ |v| ∧ v(i) = b =⇒ (i > 0 ∧ v(i−1) = a)
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This is precisely the statement P (v), so by the induction hypothesis, v
has a decomposition into words in {a, ab}, v = v1 . . . vm for some m < |v|
and vi ∈ {a, ab}.
We can now construct a decomposition for w, w = w1 . . . wm+2 such that
w1 = a, w2 = a, and wi+2 = vi for 1 ≤ i ≤ m. Since m < |v| and
|v| = |w| − 2, m+ 2 < |w|. QED.

2. w = aab: by the same argument as the previous case, v has a decomposi-
tion into words in {a, ab}, v = v1 . . . vm for some m < |v| and vi ∈ {a, ab}.
We can similarly construct a decomposition for w, w = w1 . . . wm+1 such
that w1 = ab and wi+1 = vi for 1 ≤ i ≤ m. Since m < |v| and |v| = |w|−2,
in particular m+ 1 < |w|. QED.

3. w = bav or w = bbv: P (w) cannot hold (set i = 0), so the statement is
vacuously true.

□

Exercise 2 For each the following languages, construct an NFA A that rec-
ognizes them, i.e. L(A) = Li:

1. L1: binary strings divisible by 3

2. L2: binary strings divisible by 4

3. L3: {(w1 ⊕ w2) | w1 ∈ L1 ∧ w2 ∈ L2 ∧ |w1| = |w2|}

where ⊕ is the bitwise-xor operation on binary strings.

Solution

1. The language of binary strings divisible by 3. We need two observations
to construct this automaton:

(a) If the automaton has consumed a binary string s with decimal value,
say, val(s) = n, then we can determine the decimal value of the
string after reading one more character as either val(s0) = 2n or
val(s1) = 2n+ 1.

(b) The set of strings is finite, but it is sufficient to know only the value
of the string modulo 3 to determine if it is divisible.

We construct the automaton A1 = (Q,Σ, δ, qinit, F ) where:

• Q = {qinit, q0, q1, q2}, representing the initial state (empty word has
no value), and the states corresponding to the values 0, 1, 2 modulo
3.

• Σ = {0, 1}, as required.
• δ = {(qi, 0, qj) | 2i mod 3 = j} ∪ {(qi, 1, qj) | (2i + 1)mod3 = j} ∪
{(qinit, 0, q0), (qinit, 1, q1)}, i.e., there is a transition from qi to qj if, as
the currently known value modulo 3 is i, on reading 0 the next value
is j = 2i mod 3. We use the fact that 2n mod 3 = 2(n mod 3)
mod 3. The case for reading 1 is similar. The translations from the
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initial state are to the states corresponding to the values 0, 1 modulo
3.

For example, if we have read “1101”, with decimal value 13, we must
be in state q1, as 13 mod 3 = 1. On reading a 0, we have the string
“11010” with decimal value 26, and 26 mod 3 = 2, so we transition
to q2.

The full automaton is below.

• F = {q0} as we accept that words that are divisible by 3, and are
hence equal to 0 modulo 3.

The automaton is:

qinitstart q0

q1

q2
0

1

0

1

01

0

1

2. The language of binary strings divisible by 4. The construction is similar
to the one above, now with 5 states.

qinitstart q0

q1 q2

q3
0

1

0

1

0

1
0

1

0

1

3. To compute the bitwise-xor of two strings, we must compute a product
automaton. To accept a word w, there must exist w1, w2 such that w1 ∈
L1, and w2 ∈ L2.

We do not explicitly construct the automaton, but present an argument.
First, consider the truth table for xor:

b1 b2 b1 ⊕ b2
0 0 0
0 1 1
1 0 1
1 1 0

Notably, given a xor result, we cannot exactly determine the input bits. In
essence, we construct an automaton that, given a string, tries to simulate
the two input automata in parallel non-deterministically on all possible
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pairs of input strings. If any of them are accepted, that means we found a
pair of strings that, one, are accepted by the two original automata, and
two, have the input string as their bitwise-xor.

Formally, the automaton A3 = (Q,Σ, δ, qinit, F ) has:

• Q = Q1 ×Q2, where Q1 and Q2 are the state sets of A1 and A2.

• Σ = {0, 1} as before.

• qinit = (q1,init, q2,init) where q1,init and q2,init are the initial states of
A1 and A2.

• F = F1 × F2 similarly.

• δ is constructed as follows: for a pair of states (q1, q2), on reading
a 0, we look at the truth table of xor; two input pairs (0, 0) and
(1, 1) could have produced this result bit. Hence, we add transi-
tions for both automata simultaneously, (((q1, q2), 0, (q

′
1, q

′
2))) corre-

sponding to possible inputs (0, 0) if δ1(q1, 0, q
′
1) and δ2(q2, 0, q

′
2), and

similarly ((q1, q2), 0, (q
′
1, q

′
2)) corresponding to possible inputs (1, 1)

if δ1(q1, 1, q
′′
1 ) and δ2(q2, 1, q

′′
2 ).

The case for reading a 1 is similar, with possible input pairs (0, 1)
and (1, 0).

□

Exercise 3 Give a verbal and a set-notational description of the language
accepted by each of the following automata. You can assume that the alphabet
is Σ = {a, b}.

1. A1

q0start q1 q2
a a

a, bb b

2. A2

q0start q1 q2
a

b

a, bb

a

Solution

1. As regular expression: b∗ab∗, this is the language of words that contain
exactly one a. In set-notation:

{w | ∃!i. 0 ≤ i ≤ |w| ∧ w(i) = a}
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2. As generalized regular expression (with complement): (Σ∗aaΣ∗)c. With-
out complement: (b∗(ab∗)∗)∗. This is the language of words that contain
no consecutive pair of a’s. In set-notation:

{w | ∀i. 0 ≤ i < |w| ∧ w(i) = a =⇒ (i+ 1 ≥ |w| ∨ w(i+1) ̸= a)}

□

2 Lexing

Consider a simple arithmetic language that allows you to compute one arith-
metic expression, construct conditionals, and let-bind expressions. An example
program is:

let x = 3 in

let y = ite (x > 0) (x * x) 0 in

(2 * x) + y

The lexer for this language must recognize the following tokens:

keyword : let | in | ite
op : + | - | * | /

comp : > | < | == | <= | >=
equal : =

lparen : (

rparen : )

id : letter · (letter | digit)∗

number : digit+

skip : whitespace

For simplicity, letter is a shorthand for the set of all English lowercase letters
{a− z} and digit is a shorthand for the set of all decimal digits {0− 9}.

Exercise 4 For each of the tokens above, construct an NFA that recognizes
strings matching its regular expression.

Solution The construction is similar in each case, following translation of
regular expressions to automata. For example:

• keyword: let | in | ite
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q0start

ql qe qlet

qi1 qin

qi2 qt qite

l

e t

i n

i

t e

• id: letter · (letter | digit)∗

q0start q1
letter

letter

digit

The other cases are similar. □
A lexer is constructed by combining the NFAs for each of the tokens in

parallel, assuming maximum munch. The resulting token is the first NFA in the
token order that accepts a prefix of the string. Thus, tokens listed first have
higher priority. We then continue lexing the remaining string. You may assume
that the lexer drops any skip tokens.

Exercise 5 For each of the following strings, write down the sequence of tokens
that would be produced by the constructed lexer, if it succeeds.

1. let x = 5 in x + 3

2. let5x2

3. xin

4. ==>

5. <===><==

Solution

1. [keyword("let"), id("x"), equal, number("5"), keyword("in"),

id("x"), op("+"), number("3")]

2. [id("let"), number("5"), id("x2")]

3. [id("xin")]

4. [comp("=="), op(">")]

5. [comp("<="), comp("=="), op(">"), comp("<="), equal("=")]

□
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Exercise 6 Construct a string that would be lexed differently if we ran the
NFAs in parallel and instead of using token priority, simply picked the longest
match.

Solution There are many possible solutions. The key is to notice which tokens
have overlapping prefixes.

An example is letx1in, which would be lexed as [keyword("let"),

id("x1"), keyword("in")] if we check acceptance in order of priority, but
as [id("letx1in")] if we run them in parallel. □
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