
Computer Language Processing

Exercise Sheet 05

October 26, 2022

Welcome to the fifth exercise session of CS320!

Exercise 1
Consider an expression language with a halving operator on even numbers. We are designing an

operational semantics and a type system that ensures that we never halve an odd number.

• expr ::= half(expr) | expr + expr | INTEGER

The values of our language are all integers. We denote values by 𝑛 and 𝑘.

We will design the operational semantics of our language. Semantics should define rules that

apply to as many expressions as possible subject to the following constraints:

• Our operational semantics should not permit halving unless the value of an integer

constant is even

• It should only perform evaluation of operands from left to right

Find a minimal subset of the operational semantics rules below that describe this behavior

𝑒 ⇝ 𝑒
′

half(𝑒)⇝ 𝑒
′

(A)

𝑛 is a value 𝑛 = 2𝑘

half(𝑛)⇝ 𝑘 (B)

𝑛 is a value

half(𝑛)⇝ ⌊
𝑛

2
⌋

(C)

half(𝑒)⇝ half(𝑒
′
)

half(𝑒)⇝ 𝑒
′

(D)

𝑒 ⇝ 𝑒
′

half(𝑒)⇝ half(𝑒
′
) (E)

1

𝑒
′ ⇝ half(𝑒)

half(𝑒)⇝ 𝑒
′

(F)

𝑛1 is a value 𝑛2 is a value 𝑘 = 𝑛1 + 𝑛2 𝑛1 is odd

𝑛1 + 𝑛2 ⇝ 𝑘 (G)

𝑒 ⇝ 𝑒
′

𝑛 is a value

𝑛 + 𝑒 ⇝ 𝑛 + 𝑒
′

(H)

𝑒2 ⇝ 𝑒
′
2

𝑒1 + 𝑒2 ⇝ 𝑒1 + 𝑒
′
2 (I)

𝑛1 is a value 𝑛2 is a value 𝑘 = 𝑛1 + 𝑛2 𝑛1 is even 𝑛2 is even

𝑛1 + 𝑛2 ⇝ 𝑘 (J)

𝑛1 is a value 𝑛2 is a value 𝑘 = 𝑛1 + 𝑛2

𝑛1 + 𝑛2 ⇝ 𝑘 (K)

𝑒1 ⇝ 𝑒
′
1

𝑒1 + 𝑒2 ⇝ 𝑒
′
1 + 𝑒2 (L)

2

Exercise 2
Consider a simple programming language with integer arithmetic, boolean expressions and

user-defined functions.

𝑡 ∶= 𝑡𝑟𝑢𝑒 | 𝑓 𝑎𝑙𝑠𝑒 | 𝑐

| 𝑡 == 𝑡 | 𝑡 + 𝑡

| 𝑡 && 𝑡 | 𝑖𝑓 (𝑡) 𝑡 𝑒𝑙𝑠𝑒 𝑡

| 𝑓 (𝑡, ..., 𝑡) | 𝑥

Where 𝑐 represents integer literals, == represents equality (between integers, as well as

between booleans), + represents the usual integer addition and && represents conjunction.

The meta-variable 𝑓 refers to names of user-defined function and 𝑥 refers to names of variables.

You may assume that you have a fixed environment 𝑒 which contains information about

user-defined functions (i.e. the function arguments and the function body).

1) Inductively define the substitution operation for your terms, which replaces every free

occurrence of a variable in an expression by an expression without free variables.

The rule for substitution in an addition is provided as an example. Here, 𝑡[𝑥 ∶= 𝑒] denotes the

substitution of every free occurrence of 𝑥 by 𝑒 in 𝑡.

𝑡1[𝑥 ∶= 𝑒] −→ 𝑡
′
1 𝑡2[𝑥 ∶= 𝑒] −→ 𝑡

′
2

(𝑡1 + 𝑡2)[𝑥 ∶= 𝑒] −→ (𝑡
′
1 + 𝑡

′
2)

2) Write the operational semantics rules for the language, assuming call-by-name semantics

for function calls. In call-by-name semantics, the arguments of a function are not evaluated

before the call. In your operational semantics, parameters in the function body are to merely

be substituted by the corresponding unevaluated argument expression.

3

Exercise 3
Consider the following grammar and evaluation rules for untyped lambda calculus with

call-by-value semantics:

• Values: v ::= 𝜆𝑥. 𝑡1

• Terms: t ::= x | 𝜆𝑥. 𝑡1 | t t (left-associative)

𝑡1 ⇝ 𝑡
′
1

𝑡1 𝑡2 ⇝ 𝑡
′
1 𝑡2 (App1)

𝑡2 ⇝ 𝑡
′
2

𝑣 𝑡2 ⇝ 𝑣 𝑡
′
2 (App2)

(𝜆𝑥. 𝑡1) 𝑣 ⇝ 𝑡1[𝑥 ↦ 𝑣] (AppAbs)

We use Church encoding to represent numbers. In particular, we define the following terms:

𝑐0 = 𝜆𝑠. 𝜆𝑧. 𝑧

𝑐1 = 𝜆𝑠. 𝜆𝑧. 𝑠 𝑧

𝑐2 = 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 𝑧)

𝑐3 = 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 (𝑠 𝑧))

𝑝𝑙𝑢𝑠 = 𝜆𝑚. 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑚 𝑠 (𝑛 𝑠 𝑧)

𝑠𝑐𝑐 = 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑛 𝑠 𝑧)

1) Evaluate the expression (𝑠𝑢𝑐𝑐 (𝑠𝑢𝑐𝑐 𝑐1)) step-by-step following the semantics above

2) Make minimal changes to the evaluation rules in order to match the call-by-name semantics.

With call-by-name semantics, a function can be applied to its argument even if the argument

is not completely reduced (ie. it is not a value). Repeat the evaluation of (𝑠𝑢𝑐𝑐 (𝑠𝑢𝑐𝑐 𝑐1)) with

the new semantics.

3 As you might notice, we are still not able to obtain the reduced form 𝑐3 = 𝜆𝑠. 𝜆𝑧. 𝑠 (𝑠 (𝑠 𝑧))

after evaluation with the call-by-name semantics. Add a new rule (to either call-by-value or

call-by-name) that would allow us to obtain such a form. Evaluate (𝑠𝑢𝑐𝑐 (𝑠𝑢𝑐𝑐 𝑐1)) to verify

your answer.

4

https://en.wikipedia.org/wiki/Church_encoding

	Exercise 1
	Exercise 2
	Exercise 3

