Computer Language Processing

Exercise Sheet 07

November 10, 2022

Welcome to the seventh exercise session of CS320 !
This week, the goal is to get prepared for the midterm.

Exercise Lexical analysis

To practice lexical analysis, you can do the following exercises from past exams :
Exam 2018 : Exercise 1

Exam 2019 : Exercise 1

Exercise Parsing LL(1)

To practice LL(1) parsing, you can do the following exercises from past exams :
Exam 2009 : Exercise 2
Exam 2014 : Problem 3
Exam 2018 : Exercise 2

Exam 2019 : Exercise 2

Exercise CYK parsing and Chomsky’s normal form

To practice CYK parsing and Chomsky normal form, you can do the following exercises from
past exams :

Exam 2013: Ex3
Exam 2014: Ex4
Exam 2015: Ex3

(2015 Ex 3) Consider the following grammar that accepts JSON (JavaScript Object Notation)
strings:

json ::= object

object ::= { pairs } | {}


https://gitlab.epfl.ch/lara/cs320/-/blob/main/past-exams/2018/exam-en.pdf
https://gitlab.epfl.ch/lara/cs320/-/blob/main/past-exams/2019/exam-en.pdf
https://gitlab.epfl.ch/lara/cs320/-/blob/main/past-exams/2009/assignment.pdf
https://gitlab.epfl.ch/lara/cs320/-/blob/main/past-exams/2014/quiz.pdf
https://gitlab.epfl.ch/lara/cs320/-/blob/main/past-exams/2018/exam-en.pdf
https://gitlab.epfl.ch/lara/cs320/-/blob/main/past-exams/2019/exam-en.pdf

pairs ::= pairs STRING : value | ¢
value ::= STRING | NUMBER | object

a) Convert the grammar to Chomsky Normal Form. Recall that a grammar in CNF should
satisfy the following properties:

« terminals t occur alone on the right-hand side: X ==t
+ no productions of arity more than two
« no nullable symbols except for the start symbol
+ no single non-terminal productions X ::=' Y
+ no unproductive non-terminal symbols
+ no non-terminals unreachable from the start symbol
It is sufficient if you only write the final grammar that you obtain.

b) Check using the CYK algorithm if the word: “{ STRING : {} }” can be parsed by the grammar.
Below you can find the template of the CYK parse table for the string. Fill in the entries of the
table.

STRING




Exercise Types rules, preservation and inferences

(2013 Ex 1 - we removed subtyping as it was not presented this year)

Consider the following typed language on immutable identifiers:

expr ::=val ident = expr; expr Variable binding (4.1)
expr ::=1i where i is an integer constant (4.2)
expr ::= (ident : T) = expr Creates an anonymous function (4.3)
expr ::= expr(expr) Applies a function (4.4)
T ::=1Int Int type (4.5)
T::=T=T Function type (4.6)
T ::= Collection[T] Collection type 4.7)

For the purpose of this exercise, we add a polymorphic type Collection[T] to the language,
where T can be any existing type. We extend the expression syntax with existing customized
function symbols:

expr ::= EmptyCol[«a] Creates an empty collection of elements of type « (4.8)
expr ::= add(expr,expr) Adds an element to a collection (4.9)
expr ::= permute(expr) Returns a function from a collection  (4.10)
expr : := map(expr) Returns a function from a collection  (4.11)
expr : := flatMap(expr) Returns a function from a collection  (4.12)

Informally, the semantics of the extensions is the following:

« EmptyCol[«] (line 4.8) takes a type parameter and returns an empty collection of this
type.

« add(ey, e;) (line 4.9) takes a collection e; and an element e, and returns the collection e;
to which the element has been added.

« permute(expr) (line 4.10) takes a collection, and returns a function which is a permuta-
tion mapping of the elements of the collection. See example below.

« map(expr) (line 4.11) takes a collection and returns a function. This function accepts a
mapping from an element to another element and returns the mapped original collection.

« flatMap(expr) (line 4.12) takes a collection and returns a function. This function accepts
a mapping from an element to a collection of elements and returns the union of all
images of elements of the original collection.

For example, if x = add(add(add(EmptyCol[Int], 1), 2), 3), it could be that:
permute(x)(1) ==

permute(x)(2) ==
permute(x)(3) ==

For any other integer, i, permute(x)(i) could be either 1, 2 or 3.

3



If collections were sets, we would also have the following (to illustrate):

map(x)(a = 1) = {1}
flatMap(x)(a = add(x,a + 3)) = {1,2,3,4,5, 6}
map(x)(permute(x)) = map(x)((i : Int) = permute(x)(i)) = x

The type rules for expressions are the following:

(x:T)eT I'e: T -f:T=>U F'te : T [,(x,T)Fe : U
F=x:T ' f(e): U I'—(valx =ej;e) : U

a) Complete the following type rule templates (replace all ??? occurences) so that they are
consistent with the described meaning of the extensions and sufficient to type check the
extension if we exclude subtyping. You can abbreviate Collection[T] as C[T]. Here is a example
rule for flatMap:

I' e : Collection|[T]
I - flatMap(e) : (T = Collection[T]) = Collection[T]

7?? ?7?? 7?? 27?7

I - EmptyCol[a] :??? T add(ej,e;) :??? T I permute(e) :??? T - map(e) :???

b) Prove that the following program type checks by writing the type derivation tree. You can
write a separate tree for each right-hand side of variable definition.

val x = add(add(EmptyCol[Int], 1), 2)

val z = add(add(x, 3), 4)

val y = add(EmptyCol{Int = Int}, permute(z))
flatMap(y)(map(x))

(2018 Ex 4.2)
For which of the following expressions does type inference using unification succeed? Circle
the correct answers.

Ly=x=(xy)

2. x=(y = (x(y) + y(x))
3. f= (x = f(f (%))

4. f= (f(x=4)+£(5)



Unification algorithm

Apply the unification algorithm on the following function:

def curry(f) = {

x =y =1f(xy)
}

(x:7) = ((y: 71) =
(E)(((x1), (yi)):73) )i 74
): T
): Te

Write each step, mentioning what rule of the algorithm you are applying. We give you the
initial step.

1. Ty = (T3 => T4)
3 = (7,71)
75 = (11 => 14)
76 = (1 => 15)

2.

3.

Write down an expression for the type of the argument (f) and of the result of curry in terms
of types 7,7y, 74:

(argument) f

(result) curry(f)




	Exercise Lexical analysis
	Exercise Parsing LL(1)
	Exercise CYK parsing and Chomsky's normal form
	Exercise Types rules, preservation and inferences

